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Abstract This article is concerned with the representation of preferences which
do not satisfy the ordinary axioms for state-independent utilities. After suggesting
reasons for not being satisfied with solutions involving state-dependent utilities, an
alternative representation shall be proposed involving state-independent utilities and
a situation-dependent factor. The latter captures the interdependencies between states
and consequences. Two sets of axioms are proposed, each permitting the derivation of
subjective probabilities, state-independent utilities, and a situation-dependent factor,
and each operating in a different framework. The first framework involves the concept
of a decision situation—consisting of a set of states, a set of consequences and a pref-
erence relation on acts; the probabilities, utilities and situation-dependent factor are
elicited by referring to other, appropriate decision situations. The second framework,
which is technically related, operates in a fixed decision situation; particular “subsitu-
ations” are employed in the derivation of the representation. Possible interpretations
of the situation-dependent factor and the notion of situation are discussed.
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1 Introduction

It has been known for many years that the axioms implying the state-independence of
utilities which appear in many classical theories of decision under uncertainty, such as
those of Savage (1954) and Anscombe and Aumann (1963), do not hold in many impor-
tant situations, such as cases of life insurance or health insurance (Arrow 1974; Cook
and Graham 1977). The conclusion normally drawn is that a representation involving
state-dependent utilities is required; thus the work on this subject (for example, Karni
et al. 1983; Karni and Mongin 2000; Karni and Schmeidler 1993; Karni 2008; Drèze
1987; Drèze and Rustichini 2004). However, this is not the only option; in this article, an
alternative representation shall be proposed, and a representation theorem for it proved.

To introduce the problems posed by violations of the traditional state-independence
axioms, and the motivation for representation theorems for state-dependent utility, con-
sider an example closely related to that proposed by Aumann in his correspondence
with Savage (reproduced in Drèze 1987, pp. 76–81; this version is taken from Karni
1996). A woman is to undergo a potentially fatal operation, with 50–50 chances of
survival. Her husband, who knows the odds, is offered two bets: one pays $100 if the
operation is successful and nothing if not; the other pays $100 if the operation is not
successful and nothing if it is. A common representation of the bets is given in Table 1.
They are considered to be acts: functions from a set of states—taken to be success
and failure of the operation—to a set of consequences (elements to which the husband
allocates utility values)—taken to be winning $100 and winning $0. Although the
chances of winning the money are equal in both cases, the husband would apparently
choose the former bet, because the $100 would be more precious to him if his wife
were with him to enjoy it.

Such behaviour may pose two distinct challenges for state-independent utility theo-
ries. First of all, it may cast doubt on the accuracy of such theories as representations of
behaviour. Secondly, it may cast doubt on the claim that such theories elicit the agent’s
beliefs and desires, in the form of probabilities and utilities. The second challenge is
more widespread and more serious than the first.

Consider, firstly, the extent of the challenges. There are many cases where agents
who make the choices described in the example have preferences which do not satisfy
some axioms of the standard theory—most notably, cases where the axioms ensur-
ing state-independence of utility (P3 and P4 in Savage (1954) and Monotonicity in
Anscombe and Aumann (1963); see Sect. 2.1) are violated. Such cases pose problems
for the behavioural and the elicitation claims of the theory: on the one hand, these are
cases where the theory is shown to be behaviourally inaccurate; on the other hand,
since the axioms need to be satisfied for the theorems to apply, and for the probability
and utility to be elicited using them, these are cases where the theory cannot be used
to elicit the agent’s attitudes.

Table 1 2-consequence
formulation of decision problem

Success Failure

A Bet on success $100 $0
B Bet on failure $0 $100
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Living without state-independence of utilities 407

However, although Aumann and Savage assumed in their discussion that the state-
independence axioms are violated, the pattern of choices is not in fact incompatible
with satisfaction of these axioms. Karni (1996) gives a development of Aumann’s
example where all the standard Savage axioms are satisfied, so that probabilities and
utilities can be elicited using Savage’s theorem. The probability function elicited as-
signs more weight to the success of the operation than to its failure; given that the
utilities are state-independent, this is the only way to account for the husband’s strict
preference over the bets. Such examples do not pose a particular challenge for Sav-
age’s theory on the behavioural front: to the extent that all the axioms are satisfied,
the theory adequately describes the agent’s behaviour. However, as Karni points out,
they seem to pose a challenge to the theory’s pretension to elicit the agent’s beliefs
(and desires). The probability function elicited allocates different probabilities to the
success and failure of the operation, and this contradicts the intuition that the husband
believes success to be as likely as failure—an intuition which is sustained not only
by the assumption that he is fully cognizant of the odds of survival, but also by some
of his other actions (for example, he advises a friend, who is offered the same pair
of bets, that the odds of winning are the same). Karni concludes that the probabilities
furnished by Savage’s theorem do not properly represent the husband’s beliefs. This is
a case where Savage’s theory applies and provides a probability and utility function,
but it is doubtful whether these accurately represent the agent’s attitudes.

The behavioural problem is also less serious than the elicitation problem. Strictly
speaking, one could reply to the former problem by resorting to a representation which
does not rely on the state-independence axioms. In the case of expected utility, one
obtains an additively separable representation, that is, a representation in terms of a
real-valued function on pairs of states and consequences—which we shall call the
evaluation function1—that is of the following form:

f � g iff
∑

s∈S

U (s, f (s)) ≤
∑

s∈S

U (s, g(s)) (1)

At a push, one could decompose the evaluation function U into a probability and
state-dependent utility (U (s, x) = p(s) · u(s, x)). However, such a decomposition is
entirely arbitrary: any (reasonable) probability function could be used, for example.
Representations such as this, perhaps with arbitrary decompositions, are sufficient for
many economic applications (though not all: see Karni and Schmeidler 1993, §4, for
an example). However, they do not provide a viable solution to the elicitation problem:
here, one needs a (preferably principled) way to decompose the evaluation function
U into a unique probability function and a (suitably) unique utility function.

As regards this problem, which is doubtless the main challenge posed by the failure
of state-independence axioms, two strategies have been proposed. The first is pro-
moted by theorists working on state-dependent utilities. The intuition is that, in the
example above, the utility of the consequences depends on the states: $100 is more
desirable if the wife survives than if she does not. Thus the representation should
feature state-dependent utilities. Many state-dependent utility theorems are supposed

1 Thanks to Mark Machina and Edi Karni for suggesting this term.
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Table 2 4-consequence formulation of decision problem

Success Failure

A Bet on success $100 with wife alive $0 without wife

B Bet on failure $0 with wife alive $100 without wife

C Bet on success (but wife murdered) $100 without wife $0 without wife

D Bet on failure (but wife resuscitated) $0 with wife alive $100 with wife alive

E Bet on failure (but wife murdered or resuscitated) $0 without wife $100 with wife alive

to provide an answer to the elicitation question: they yield a unique probability and a
(suitably) unique state-dependent utility function, the uniqueness being necessary for
the claim that these functions represent the agent’s beliefs and utilities (Karni et al.
1983; Karni and Schmeidler 1993; Karni 1993a,b, 2007, 2008).

The second strategy is the one proposed by Savage in his reply to Aumann. He sug-
gests representing the decision by the same set of states, but using as consequences the
following four elements: $100 with survival, $100 with demise, $0 with survival, $0
with demise (Table 2). He then evokes the “make-believe” situation where the husband
considers that any act (function from states to consequences) taking values in this set
of consequences is an available option—and in particular, the acts which, in the case
where the operations fails, would yield $100 and the wife returned to him in good
health (acts D and E). In this situation, the axioms of state-independent utility apply
and the classical representation theorems can be employed. These yield, according
to a proponent of this strategy, the agent’s beliefs and utilities (it is easy to show,
in particular, that the problem raised by Karni’s aforementioned development of the
example no longer applies).

Each of these strategies has its price. Under the state-dependent utility approach, the
agent’s utilities for the consequences depend on the states involved; it thus becomes
impossible to use these utilities in decision situations where the same set of conse-
quences are on offer, but the states of the world are different. Consider the case where
the agent is offered a bet on a horse race, with the consequences being appropriate
combinations of $100 and $0: wouldn’t one expect him to have the same utilities in
this situation as in the one described in the story above? Under the state-dependent
analysis, this cannot be the case, since the states on which the utilities are dependent
(success and failure of the operation) are not involved. This naturally casts doubt on
whether these theorems are yielding his “real” utilities, for one would expect him to
have the same utilities for the same consequences considered in different situations
(when betting on his wife’s operation, when betting on a horse race, when making
investment decisions, when taking out life insurance and so on), and this is not a
property of the utilities that the state-dependent utility theorems provide.2

To understand the weakness of Savage’s strategy, note that it operates in two stages.
In the first stage, one rewrites the decision problem with an enlarged set of conse-
quences; this corresponds to moving from Table 1 to Table 2. In the second stage, one

2 See Sect. 3 for further discussion of the relationship between attitudes in different situations.
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Living without state-independence of utilities 409

asks the decision maker to make his choice as if a certain number of the acts—such
as acts involving murder or resuscitation (acts C–E in Table 2)—were not fantastic or
ridiculous. The first stage of the strategy involves a simple change in the formulation
of the decision problem and no behavioural change on the part of the agent. By con-
trast, the second stage involves an explicit request that the agent alters his behaviour.
This can be seen by the fact that the agent, answering in the “as if” mode, is indiffer-
ent between the acts A and E in Table 2, whereas in reality he would never consider
picking act E.

In the terminology which will be introduced in the next section, we will say that the
second stage involves two different decision situations: both the decision situations
have the same states and consequences (and thus acts), but the decision maker’s pref-
erences differ between the two. One of the decision situations is the one the agent is
actually in (those are the preferences he actually has); the challenge is to understand
his behaviour and attitudes in this situation. The other decision situation is “make-
believe”—the preferences he has in that situation are hypothetical, and conflict with
his real preferences. That is the situation where one can elicit his beliefs and utilities
using standard state-independent utility results.

Although these are behaviourally distinct decision situations, for the beliefs and
utilities in the former situation to be elicited in the way that Savage suggests, it needs
to be assumed that the agent has the same attitudes in the two situations. What permits
this assumption? An adequate answer to this question should make clear the relation-
ship between the two situations. The simplest and most intuitive response is that the
former situation is as the latter, with an added restriction on the set of acts available
(namely, that the fantastic or ridiculous acts are not available). However, the status
of this restriction is problematic. First of all, it is posed exogenously to the decision
theory used. Furthermore, it is known that one cannot incorporate such restrictions
endogenously into representation theorems such as Savage’s, since these depend on
the availability of a full set of acts (that is, all functions from states to consequences).
Indeed, such restrictions generally lead to representations in terms of state-dependent
utilities, which is exactly what Savage’s strategy was meant to avoid (Hammond 1998,
§6 considers the case, pertinent for this example, where the consequences attainable
from different states are distinct). To sum up, the strategy proposed by Savage relies
on a decision situation where the agent shows preferences which differ from those
he actually has; the weakness in the strategy is that, although the strategy relies on
assumptions about the relationship between this situation and the situation the deci-
sion maker is actually in (his real preferences), this relationship is poorly understood.
Indeed, any attempt to account for the relationship in the theory leads us back to
state-dependent utilities.

Two morals can be drawn from these considerations. The discussion of Savage’s
strategy makes it clear that there is an (inevitable) interdependence between states
and consequences in situations such as the one in the example. However, given what
has been said about the solution offered by state-dependent utility theorems, it is not
clear that this interdependence should be built into the utilities. This seems to suggest
that, if there is interdependence of states and consequences, then it must be specific
to situations where these states and consequences are involved. A natural suggestion
is to represent the interdependence by a situation-dependent factor expressing the
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relationship between states and consequences. The representation would then be as
follows. For S the set of states involved in the situation, C the set of consequences and
� a preference relation on acts (functions from S to C) there is a probability function
p on S, a (state-independent) utility function u on C and a function γ on S × C—the
situation-dependent factor—such that, for any acts f, g,

f � g iff
∑

S

p(s) · γ (s, f (s)) · u( f (s)) ≤
∑

S

p(s) · γ (s, g(s)) · u(g(s)) (2)

The main aim of this article is to propose a representation theorem for this sort of
representation: that is, to propose a set of conditions under which there is a unique
probability and a (suitably) unique utility and situation-dependent factor such that (2)
holds. This can be considered as another reply to the behavioural problem posed by
examples such as Aumann’s, insofar as it represents correctly the preferences of the
agent, using not only the probabilities and utilities, but also the situation-dependent fac-
tor. It constitutes a reply to the elicitation problem, insofar as it yields (suitably) unique
probabilities and utilities, which feature in the representation of preferences and can
be thought of as capturing the agent’s beliefs and desires. Indeed, the representation
theorem relies on an elementary but attractive intuition on how to elicit probabilities
and utilities: for elicitation, use situations which are as simple as possible. To elicit the
probabilities and utilities in a situation where there is interdependence between states
and consequences, the technique will be to look in situations where either the sets
of states or sets of consequences are different, but where there is no interdependence
between the states and the consequences, so that the traditional (state-independence)
results can be applied.

In Sect. 2, a formal notion of situation shall be defined, postulates and axioms shall
be proposed and a representation theorem shall be stated. In Sect. 3, the concepts and
techniques introduced, as well as possible interpretations, applications and relations
to existing approaches, shall be considered at length. It turns out that the use of other
decisions situations is, to a large extent, an artifice of the way the decision problem
is modelled; in Sect. 4, a representation theorem for (2) which operates in a single
situation shall be stated. Proofs are to be found in the Appendix.

2 Situational version

2.1 Preliminaries and axioms

A decision situation is characterised by a set of states and a set of consequences, with
a preference on the acts.

Definition 1 A decision situation σ consists of a set Sσ (of states in the situation), a set
Cσ (of consequences in the situation) and a binary relation �σ on the set of functions
Aσ from Sσ into Cσ (preferences in the situation over the acts in the situation).

A set of situations S is assumed to be given; this is the set of decision problems
which the agent might have faced at the current moment, with his preferences over
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Living without state-independence of utilities 411

the acts he would have faced. Two sorts of conditions will need to be proposed on
S to obtain the representation. On the one hand, there will be general, more or less
standard conditions guaranteeing that the agent’s choices are consistent and that he is
an expected utility maximiser (rather than a non-expected utility maximiser, for exam-
ple). On the other hand, there will be particular conditions regarding the existence of
specific types of situations, which are required for the elicitation technique. The two
postulates stating the former conditions will be presented first; then we will turn to
the axioms corresponding to the latter conditions.

Basic postulates. According to the definition above, S may contain two situations
with the same states and consequences but different preferences. This represents an
agent whose preferences are inconsistent: they may differ on the same set of acts.
The theorem below does not apply to such agents. It employs a minimal consistency
constraint on the agent’s preferences which implies that he is not of this type: namely,
that he can only have one order of preference on any set of acts envisaged.

Postulate 1 For all σ1, σ2 ∈ S, if Sσ1 = Sσ2 and Cσ1 = Cσ2 , then �σ1 = �σ2 .

This constraint allows the situations to be thought of extensionally; that is, any two
distinct situations differ either in their sets of states or in their sets of consequences
(or both).

Remark 1 There is another consistency condition which may be imposed, and which
relates to the possibility of “identifying” acts between situations. An act is a function
from states to consequences: there is thus no (evident) way of saying that two acts are
the same if they belong to situations with different sets of states (they have different
domains). By contrast, it does seem that one could identify acts which belong to sit-
uations with the same set of states and which give the same consequences (they have
the same domain and the same image), although the sets of consequences available
in the situations to which they belong differ (they have different ranges). Consider,
for example, σ = (Sσ , Cσ ,�σ ) and σ ′ = (Sσ ′ , Cσ ′ ,�σ ′), where Sσ = Sσ ′ and
Cσ ⊂ Cσ ′ : it seems intuitive to identify an act in σ with the act in σ ′ that gives the
same consequences for each state, and thus to demand that the preferences over the
acts in σ are the same as the preferences over the corresponding acts in σ ′. This is
expressed by the following axiom.

Axiom A1 For any pair of situations σ1 = (Sσ1 , Cσ1 ,�σ1) and σ2 = (Sσ2 , Cσ2 ,�σ2)

with Sσ1 = Sσ2 = S and Cσ1 ∩ Cσ2 �= ∅, �σ1 |Aσ1∩Aσ2
= �σ2 |Aσ1∩Aσ2

.

(Standard mathematical notation shall be employed whereby, for an order ≤ on a
set Y and Y ′ ⊆ Y , ≤ |Y ′ is the restriction of ≤ to Y ′.)

This axiom shall not be necessary for the results in this section, and shall not be
assumed to hold unless explicitly stated. However, we shall have reason to discuss it
in Sects. 3 and 4.

The decision-theoretic framework used here is that proposed in Anscombe and
Aumann (1963), which shall now be briefly summarised.

For a given situation σ , Sσ is assumed to be finite, and Cσ is assumed to be the
set of lotteries over a finite set Xσ —the set of outcomes. Acts—functions from states

123



412 B. Hill

to lotteries—are thought of as functions from Sσ × Xσ → �; that is, the set of acts
is Aσ = { f : Sσ × Xσ → �| ∑

x∈X f (s, x) = 1}.3 Under these assumptions,
Aσ is a mixture set with the mixture relation defined pointwise: for f , h in Aσ and
a ∈ �, 0 < a < 1, the mixture a f + (1 − a)h is defined by (a f + (1 − a)h)(s, x) =
a f (s, x) + (1 − a)h(s, x) (Fishburn 1970, Chap. 13). So the von Neumann-Morgen-
stern axioms can be stated for the preference orders �σ .

Axiom A2 (Weak order) (a) For all f , g in Aσ , f �σ g or g �σ f . (b) For all f , g
and h in Aσ , if f �σ g and g �σ h, then f �σ h.

Axiom A3 (Independence) For all f , g and h in Aσ , and for all a ∈ �, 0 < a < 1,
if f �σ g then a f + (1 − a)h �σ ag + (1 − a)h.

Axiom A4 (Continuity) For all f , g and h in Aσ , if f �σ g and g �σ h, then there
exist a, b ∈ (0, 1) such that a f + (1 − a)h �σ g and g �σ b f + (1 − b)h.

Anscombe and Aumann (1963) add the following axiom:

Axiom A5 (Monotonicity) For any elements c1 and c2 of Cσ , any f in Aσ and any s
in Sσ , if c1 �σ c2 then f c1

s �σ f c2
s

where c is the constant act taking value c (for all s ∈ Sσ , f (s, x) = c(x)) and f c
s is

identical to f , except on s, where it takes value c (that is, f c
s (s, x) = c(x) and, for

s′ �= s, f c
s (s′, x) = f (s′, x)).

Fishburn (1970, p. 146) has shown that Weak Order, Independence and Continu-
ity imply that there is an additively separable representation of �σ (a representation
of form (1); see Sect. 1), such that the evaluation function is unique up to simple
positive affine transformation: for any pair of functions U and U ′ representing �σ ,
there is a positive real number a and real numbers bs for each s ∈ Sσ such that
U ′(s, x) = aU (s, x) + bs for all s ∈ Sσ and x ∈ Xσ . Anscombe and Aumann (1963)
show furthermore that adding the Monotonicity axiom yields a decomposition of this
function into a unique probability function over the set of states and a state-indepen-
dent utility function over the set of outcomes which is unique up to positive affine
transformation. Indeed, the Monotonicity axiom is so closely connected to state inde-
pendence that it is often simply called the axiom of state independence (in Hammond
(1998), for example).

This study will follow much of the literature on state dependence of utilities and
suppose that the expected utility axioms other than those yielding state independence
hold in every situation. This is expressed by the following postulate.

Postulate 2 For any situation σ ∈ S, �σ satisfies Weak Order, Independence and
Continuity.

3 In thinking of acts in this way, Anscombe and Aumann’s “Reversal of Order” axiom is assumed to hold
(Anscombe and Aumann 1963). As is standard in much work with this framework, this axiom shall be
assumed to hold in all situations, throughout this article. The consequences of rejecting it are explored by
Drèze (1987), for example.
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In the light of what has been said above, this postulate implies that the agent always
maximises an additive evaluation function, whether or not this function can be decom-
posed (in a non-arbitrary manner) into a probability function and a utility function.
Behaviourally, an agent satisfying this postulate always acts as if he is an expected
utility maximiser (rather than a non-expected utility maximiser), but, from an elicita-
tion point of view, satisfying the postulate is not enough to allow identification of his
probabilities and utilities.

The situations where there exists a decomposition of the evaluation function into a
probability and state-independent utility function are of special importance.

Definition 2 σ is called a simple situation if and only if �σ also satisfies Monotonicity.

The simple situations are those which permit the application of the Anscombe and
Aumann representation theorem. Let us state this explicitly.

Theorem 1 (Anscombe and Aumann 1963) For a simple situation σ , there is a unique
probability distribution pσ on Sσ and a utility function uσ on Xσ which is unique up
to positive affine transformation, such that, for f, g ∈ Aσ

f �σ g iff
∑

Sσ ,Xσ

pσ (s)uσ (x) f (s, x) ≤
∑

Sσ ,Xσ

pσ (s)uσ (x)g(s, x) (3)

An unsympathetic reading of the literature would have it that all situations are
simple, so that theorems such as this one can always be applied (Savage 1954, §5.5,
for example, seems to assume that his axioms apply in all “small world” decision
situations). This cannot be assumed here, for the challenge is to elicit probabilities
and utilities in non-simple situations (i.e. situations where the state-independence axi-
oms do not apply). A milder assumption will be made: that there are enough simple
situations to permit elicitation of (unique) probabilities and utilities. The axioms in
the representation theorem will cash out this assumption in formal terms. First, it is
necessary to introduce some preliminary definitions.

Definition 3 For a set of consequences C , let �C = {σ ∈ S| C = Cσ , σ simple}.
This is the set of simple situations with C as set of consequences.

Define ‖�C‖ = {u| ∃σ ∈ �C , p on Sσ , s.t.p, u represent �σ }, the set of utilities
involved in the representation of the preferences (according to (3)) in the simple situ-
ations. By Theorem 1 and Definition 2, ‖�C‖ is non-empty if �C is. The elements of
this set will be considered up to positive affine transformation, to avoid unnecessary
repetitions.

Similarly, for a set of states S, define �S = {σ | S = Sσ , σ simple}, and ‖�S‖ =
{p| ∃σ ∈ �S, u on Cσ , s.t.p, u represent �σ }.

The idea is to use the representations of the preferences in simple situations to
ascertain the utility in non-simple situations which have the same set of consequences;
similarly for probabilities. For this several existence and uniqueness constraints are
required on the set of simple situations; these will be the main axioms in the repre-
sentation theorem. The axioms are presented here; they will be discussed at greater
length in Sect. 3.
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Main axioms. Let us first deal with the situations sharing the same consequences.
Consider the following two axioms.

Axiom A6 (Consequence Richness) For all C , �C is non-empty.

Axiom A7 (Conative Consistency) For all C , for any σ1, σ2 ∈ �C , �const
σ1

= �const
σ2

,
where �const is the restriction of � to the constant acts.

Consequence Richness states that there are enough situations such that, for each
set of consequences, an “independent” set of states can be found—independent in
the sense that Anscombe and Aumann’s state-independence axiom, and thus their
expected utility result, applies. As such, it can be considered to be a structural or tech-
nical axiom: its behavioural consequences are negligible, and, due to the existential
quantifier, it is difficult to refute. From a technical point of view, this axiom guaran-
tees that ‖�C‖ has at least one element. See Sect. 3 for an extended discussion of the
plausibility of the axiom.

Conative Consistency is equivalent to the existence of at most one element in ‖�C‖
(Lemma 1 in the Appendix). By contrast to the previous axiom, it does have some
behavioural content: it demands that the agent’s preferences over constant acts—acts
which give the same result on all states—is independent of what the states are (and
thus, given Definition 1 and Postulate 1, of what the situation is). An agent who pre-
fers $50 to a 50–50 objective lottery yielding $100 when in the context of a horse
race (states: winners of the race) but prefers the objective lottery to the sure amount
in the context of investment on the markets (states: stock price tomorrow) violates
this axiom. Certainly, such preferences do not seem particularly consistent: he prefers
receiving the sure amount, no matter who wins the horse race, to the playing objective
lottery, no matter who wins the horse race, but he prefers the lottery, no matter what
the stock price is tomorrow, to the getting the sure amount, no matter what the stock
price is tomorrow.

One proceeds in a similar way for states and probabilities; once again, there are
two axioms.

Axiom A8 (State Richness) For all S, �S is non-empty.

Axiom A9 (Doxastic Consistency) For all S, for any σ1, σ2 ∈ �S , for any a, b ∈ Xσ1

and c, d ∈ Xσ2 with a ≺σ1 b and c ≺σ2 d, let τ : L({a, b})S → L({c, d})S be the
bijection between the set of acts in σ1 with values in the set of lotteries on {a, b} and the
set of acts in σ2 taking values in the set of lotteries on {c, d}, defined by τ( f )(s, c) =
f (s, a) and τ( f )(s, d) = f (s, b) for all s ∈ S.4 Then, for all f, g ∈ L({a, b})S ,
f �σ1 g iff τ( f ) �σ2 τ(g).

State Richness is the equivalent for states of Consequence Richness (A6): it ensures
that ‖�S‖ has at least one element. As for A6, it is a largely structural assumption.

4 L(X) is the set of lotteries on the set X ; L(X)S is the set of functions from S into L(X)—that is, the set
of acts taking values in these lotteries. Recall that the acts are considered as functions from pairs of states
and outcomes to the real numbers.
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Doxastic Consistency is the equivalent of Conative Consistency (A7): it is true if
and only if ‖�S‖ has at most one element (Lemma 2). As for Conative Consistency,
it does have behavioural content: more or less, it demands that, to compare probabili-
ties of events (sets of states) using acts which differ in their consequences depending
on whether the event holds, it does not matter if one uses consequences in Cσ1 or
Cσ2 —the answer will be the same. Consider two situations: one where the agent is
betting on a horse race (states: results of the race; consequences: monetary prizes)
and another where he is advising his friend how to bet on the race (states: results of
the race; consequences: monetary prizes for the friend). Suppose furthermore that the
agent prefers a sure $100 to a sure $0 in the first situation, and that he prefers that his
friend wins $100 for sure to his friend winning nothing for sure in the second situation.
Then, according to Doxastic Consistency, he should prefer a bet of $100 on horse α

over a bet on horse β if and only if he prefers advising his friend to take the bet on
α to advising his friend to take the bet on β. Indeed, an agent who did not have such
preferences would seem rather inconsistent.

Given the preceding remarks, there is a resemblance between Doxastic Consis-
tency (A9) and Savage’s P4, which states that the preferences over bets on events are
independent of the consequences of the bets. But P4 holds within simple situations,
whereas Doxastic Consistency holds between different simple situations. So, if Dox-
astic Consistency holds between situations having different sets of consequences, one
might expect P4 to hold in the situation having the union of these sets as consequences.
This is essentially what is expressed by the following axiom, which implies Doxastic
Consistency, in the presence of A1 (Proposition 1 in the Appendix).

Axiom A10 For any S, if σ1, σ2 ∈ �S , then there is a situation σ12 ∈ �S with
Cσ12 = Cσ1 � Cσ2 , where C1 � C2 is the set of lotteries on X1 ∪ X2.

This axiom is not required for the result stated below; it shall, however, prove rel-
evant in Sect. 4.

Null events. One final axiom is required to deal with the possibility of null events. In
the state-independent representation, null events are generally those which are allo-
cated probability 0; it follows that the order is indifferent between any pair of acts
which differ only on such events. For the probabilities elicited in simple situations to
be valid in non-simple situations, the preference order in these non-simple situations
must show the same sort of indifference. Thus the following axiom is posed as a con-
sistency constraint. Recall the classic definition of a null event (Savage 1954; Karni
et al. 1983): an event A in a situation σ is null iff, for any pair of acts f, g ∈ Aσ such
that f (s) = g(s) for s /∈ A, f ∼σ g. (Null states are those whose singletons are null
events.) The axiom is as follows.

Axiom A11 (Null Consistency) For any situation σ and any event A ⊆ Sσ , if A is
null in every σ ′ ∈ �Sσ , then A is null in σ .

2.2 Theorem

The postulates and axioms give the following representation theorem.
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Theorem 2 Assume Postulates 1 and 2. Moreover, let Consequence Richness, Cona-
tive Consistency, State Richness, Doxastic Consistency and Null Consistency hold.
Then, for any situation σ ∈ S, there exists a probability distribution p on Sσ , a utility
function u on Xσ , and a function γ : Sσ × Xσ → � such that,

• for all f, g ∈ Aσ

f �σ g iff
∑

s∈Sσ
x∈Xσ

p(s) · γ (s, x) · u(x) · f (s, x)

≤
∑

s∈Sσ
x∈Xσ

p(s) · γ (s, x) · u(x) · g(s, x) (4)

• for each σ1 ∈ �Cσ , there exists a probability p1 such that, for all f1, g1 ∈ Aσ1

f1 �σ1 g1 iff
∑

s∈Sσ1
x∈Xσ1

p1(s) · u(x) · f1(s, x) ≤
∑

s∈Sσ1
x∈Xσ1

p1(s) · u(x) · g1(s, x) (5)

• for each σ2 ∈ �Sσ , there exists a state-independent utility u2 such that, for all
f2, g2 ∈ Aσ2

f2 �σ2 g2 iff
∑

s∈Sσ2
x∈Xσ2

p(s) · u2(x) · f2(s, x) ≤
∑

s∈Sσ2
x∈Xσ2

p(s) · u2(x) · g2(s, x) (6)

Furthermore, if p′, u′, γ ′ is another representation satisfying (4–6), then there exist
positive real numbers a and c, and real numbers b and ds for each s ∈ Sσ , such that
p′(s) = p(s), u′(x) = a · u(x)+ b and γ ′(s, x) = c · γ (s, x)− b · c

u′(x)
· γ (s, x)+ ds

u′(x)
,

for all s ∈ Sσ , x ∈ Xσ , and ds = 0 if s is null.

Remark 2 The probability p and utility u have the same uniqueness properties as in
typical state-independent utility theorems (for example, Theorem 1); to this extent,
they can be said to be elicited in Theorem 2. γ has new degrees of freedom which arise
largely from the fact that, whereas state-independent utilities are unique up to positive
affine transformation, state-dependent utilities are unique up to simple positive affine
transformation (see for example, Karni et al. 1983, who call these transformations “car-
dinal unit comparable transformations”). Indeed, the representation (4) naturally yields
a state-dependent utility function as the product of γ and u (see Sect. 3.1), and it is easy
to see that this function is unique up to simple positive affine transformation, just as for
the state-dependent utilities elicited by Karni et al. (1983). That is, for another triple
p′, γ ′, u′ satisfying the conditions of Theorem 2, there is a positive real number a′ and
real numbers b′

s for each state s ∈ Sσ such that γ ′(s, x)·u′(x) = a′ ·γ (s, x)·u(x)+b′
s .

Remark 3 The theorem does not assume A1, and so allows differences between the
preferences on acts taking the same set of states to the same consequences, but which
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are elements of different situations (notably, situations having the same sets of states
and different but overlapping sets of consequences). In such cases, the representations
of the preferences in the different situations may differ in γ and u.

On the other hand, if A1 holds, the preferences agree (on common acts) between
such situations; it follows that u takes the same values in situations with at least
two outcomes in common and γ takes the same values in all situations which share
the same set of states and which have at least two outcomes in common (up to the
transformations given in Theorem 2).

3 Discussion

3.1 The situation-dependent factor

The factor γ is a function of states and consequences. Since different situations nec-
essarily have different states and consequences, they will necessarily involve different
γ ’s. Thus γ is properly thought of as a situation-dependent factor: particular to the
decision situation under consideration, rather than applicable in different decision sit-
uations, as, say, utilities and probabilities are. Put succinctly, γ captures the contextual
factors of the decision situation.

It should be noted that a single decision problem can sometimes be rewritten in
several ways. The discussion in Sect. 1 provides an example: the problem the hus-
band faces can be formulated either as a choice between acts yielding one of two
consequences (Table 1) or as a choice among acts yielding one of four consequences
(Table 2). These formulations of the decision problem are two different situations, in
the sense of Definition 1, with different sets of consequences; therefore, the represen-
tations will involve different factors γ .

Consider, for example, under the 4-consequence formulation (Table 2), 50–50 (sub-
jective) probabilities, a utility of 150 for $100 with the wife alive, of 50 for $100 with
the wife dead, of 75 for $0 with the wife alive and of 25 for $0 with the wife dead, with
γ taking value 1 when the state and consequence are compatible, and 0 when they are
not. This is a typical representation of the husband’s preferences, which explains the
preference for the bet on success (bet A in Table 2) over failure (bet B) by a larger
utility of $100 with the wife alive, and the preference of the bet on success (bet A) over
a bet on resuscitation (bet E) by a low value of γ which represents the fact that the latter
bet is unbelievable. However, it is equally possible to represent the husband’s pref-
erences when the 2-consequence formulation is used (Table 1), just this will require
a different utility function (because the consequences are different) and a different
situation-dependent factor γ . For example, 50–50 probabilities, a utility of 100 for
$100 and 50 for $0, and a γ with γ (success, $100) = 1.5, γ (failure, $100) = 0.5,
γ (success, $0) = 1.5, γ (failure, $0) = 0.5 represents “the same” preferences as
described above in the 4-consequence formulation.5 Notably, they account for the

5 Naturally, any claim that the preferences are the “same” has to be qualified by the fact that, because of the
different sets of consequences, the objects of preference—the acts—differ between the two formulations.
For further discussion of the relationships between the situation-dependent factors and utilities in such
different but related situations, see Sect. 3.2.
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preference for the bet on success, whilst retaining the 50–50 beliefs about the result
of the operation. The use of the 2-consequence formulation or the 4-consequence for-
mulation is largely a decision for the theorist; as this example indicates, the proposed
representation (2) applies whatever choice is made.

As for all theorems treating decision under uncertainty, Theorem 2 elicits the proba-
bilities and utilities; moreover, it also elicits the situation-dependent factor γ . The latter
is thus to be thought of as “subjective” rather than “objectively” given. It represents
aspects of the way that the agent thinks of the decision problem and the contextual
factors involved, rather than the contextual factors “really” involved. For example, if
the decision maker did not realise that resuscitation was impossible, the γ described
above (for the 4-consequence formulation of the example) would not feature in an
accurate description of his preferences (for he would be indifferent between bet A and
bet E in Table 2), even if it is an objectively accurate representation of the relationship
between states and consequences. The topic of objective situation-dependent factors
is beyond the scope of this article.

A situation-dependent factor of this sort, and a representation of the form (2) proves
useful in the analysis of the phenomenon of adaptive preferences. In particular, it allows
a distinction between the agent’s “absolute” utility u—which is independent of the
situation in which he finds himself—and his “situation-relative” utility or “utility in
practice”. The latter is the state-dependent utility function obtained as the product of
the factor γ and the absolute utility u. See Hill (2009) for an extended discussion of
this distinction and the importance for the problem of adaptive preferences.6

The role of γ as characterising the interdependence between states and conse-
quences, or the difference between the “absolute” and “situation-relative” utilities
may prove useful in other areas of economic analysis. It is known that the agent’s atti-
tude to risk may differ depending on the state realised: his attitude to risk is different
in the case of illness as opposed to health, or in the case of life as opposed to death
(Karni 1983; Drèze 1987, Chap. 8). Under state-dependent utility representations of his
preferences, this difference is built into the utility function: the function has different
properties (form, curvature and so on) on each state. Under the proposed representa-
tion, by contrast, it is separated from his general attitude to risk. The “absolute” utility
represents the agent’s general attitude to risk (in the standard way), whereas the situa-
tion-dependent factor γ captures the aspects which are specific to the interdependence
between states and consequences involved in the particular decision situation.

Consider the example of health insurance, to which state-dependent utilities are
often applied: the states are states of health and the consequences are monetary out-
comes. γ represents the differences in utility and risk attitude with respect to change
in state of health, whereas the utility function measures his utility for money (and the
risk attitude associated) and applies even beyond decisions regarding health insurance
(to investment decisions, career decisions, and so on). For an agent who is more risk
averse in case of ill health than good health, this fact would be represented by the
fact that γ is more concave when the state is ill health than when it is good health.

6 Another possible interpretation is to think of u as the “intrinsic” utility and the product with the situa-
tion-dependent factor as the “experienced” utility. The author wishes to thank a referee for pointing out this
interpretation, and the relation to the distinction drawn by Kahneman et al. (1997).
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Future research would investigate whether tools for the analysis of risk attitude in cases
where there is interdependence between states and consequences can be developed
employing the situation-dependent factor proposed here. One would expect to obtain
techniques for doing comparative statics on the situation-dependent factor: one could
thus compare the different attitudes to health insurance of individuals with the same
beliefs about their future health and the same general utility for money.7

It should be clear from the discussion so far that, beyond the observation that γ

is a contextual or situation-dependent factor, there are several ways to give it a more
concrete interpretation. A full discussion of the range of interpretations is beyond the
scope of this article; we shall just present one further interpretation which is perhaps
applicable in some if not all cases, and which has already been suggested in the dis-
cussion of adaptive preferences (Hill 2009).

Consider once again the 4-consequence formulation of Aumann’s example. As
noted above, the situation-dependent factor which corresponds to the described pref-
erences typically takes lower values on pairs of states and consequences which are
inconsistent (failed operation and $100 with wife alive, for example) than on pairs
which are consistent. A natural interpretation of this is in terms of reliability. The act
purporting to take the state where the operation fails to the consequence where he wins
$100 and his wife is healthy is not possible. If offered such an act (or such a bet), the
agent would not trust the bookey. The act is unreliable (or, more precisely, the part of
the act purporting to send this state to this consequence in unreliable). The expected
utility should take this into account, and it is precisely the situation-dependent factor
γ that does this. An interpretation of the situation-dependent factor which seems plau-
sible in at least some cases is as a measure of the reliability of acts purporting to take
particular states to particular consequences. It should be noted finally that under this
interpretation it is most natural to expect γ to have maximum and minimum values
(utterly reliable and utterly unreliable). It is not too difficult to show, by scaling the
utilities so that they are positive, that Theorem 2 can always yield a representation
with γ ∈ [0, 1]. This form of the theorem is not given here, for such a range of γ

may not be natural for other interpretations. Indeed, it is worth re-emphasising that
this interpretation is one of many: to the extent that γ represents the effect of contex-
tual or situation-dependent aspects on the agent’s preferences, there may be as many
interpretations as there are sorts of contextual or situation-dependent factors.

3.2 The elicitation technique

The elicitation technique is based on a simple idea: instead of trying to elicit attitudes
in cases which are complicated (for example, where there is interdependence between
states and consequences), use cases which are straightforward (where there is no such
interdependence). Such a technique invokes situations other than the one in question;
it thus involves not a single situation, but a set of situations, S.

7 It may be perhaps be possible to use differences in the situation-dependent factor to account for the
observation that agents’ risk aversion depends on the circumstance or domain (MacCrimmon and Wehrung
1990; Weber et al. 2002); if so, the notion might also prove useful in studies of such differences in risk
aversion.
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The situations in S are the decision problems the agent could have been facing at the
particular moment in question (given by the sets of states and consequences) and the
preferences he would have had were he faced with these problems (given by the pref-
erence relation). One of the situations is actual: that is the situation which he is really
facing at a given moment. The others are hypothetical: he could have faced them, and
would have had the preferences specified if he had, but he is not actually facing them
(see below for further discussion of the notion of hypothetical choice involved here).
Some of these situations are simple, insofar as they do not involve interdependence
between states and consequences: they are used to elicit the agent’s probabilities and
utilities. The method of elicitation relies on a basic assumption: that the agent’s atti-
tudes (probabilities and utilities) have a certain degree of stability or constancy. For it
to make sense to elicit the agent’s probabilities and utilities in the actual situation by
looking in other situations, it must be assumed that the same probabilities and utilities
are involved in different situations.

This assumption is not only natural, but a necessity for the task of elicitation or
measurement to make any sense. First of all, one would expect rational agents to have
probabilities and utilities which are stable enough not to be excessively dependent on
the precise decision problem with which they are faced; and many real agents’ attitudes
do have this property. Secondly, if one does not suppose such constancy, one cannot
use the measurements of an agent’s probabilities and utilities in any situation other
than that in which it was measured. For example, probabilities and utilities measured
in an experiment could not be used in models of agents’ behaviour in the market. There
is a risk that this problem does indeed affect some experimental work (Harrison et al.
2007); nevertheless, for there to be any interest in measuring attitudes, an assumption
such as constancy seems to be necessary.

Furthermore, many elicitation techniques do in fact seem to make implicit use of
an assumption like the constancy assumption. Often different sorts of questions are
used to elicit different components of the representation (probabilities, utilities, deci-
sion weights and so on); these different questions correspond, in the terminology of
this section, to different situations (see Sect. 4 for a construal of these situations as
subsituations of a single fixed situation). One must thus assume that the probability
function elicited in one situation is the same as the one involved in the other situation.
Naturally, were an experimental setup to be proposed based on Theorem 2, it would
use exactly this method. First the agent’s probabilities would be elicited using standard
techniques but in situations which do not necessarily involve the consequences in the
decision problem of interest. Then the same would be done for utilities. Finally, by
eliciting his evaluation function in the situation of interest, the situation-dependent
factor would be derived.

Beyond being essential to the elicitation technique employed in the theorem, the
constancy assumption does have some behavioural content. Indeed, the Conative and
Doxastic Consistency axioms (A7 and A9)—which constitute, along with the require-
ment of basic consistency of preferences (Postulate 1) and the requirement that the
agent’s preferences have an additive representation (Postulate 2), the main behavioural
content of the theorem—follow from the constancy assumption. If the probabilities
and utilities are the same in all situations, then in those situations where they can be
elicited, one obtains the same answer. The axioms imply that this is the case: that the
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utility and probability elicited in any simple situations are always the same, for a given
set of consequences and states.

The elicitation technique rests upon another assumption, regarding the richness of
the set of situations S. To elicit the agent’s probabilities in a given non-simple situa-
tion, the technique looks in other situations, which have the same states, but different
and independent consequences, so that elicitation of probabilities is simple. Hence it
needs to be assumed that such situations exist. Similarly, to elicit utilities, it needs to be
assumed that simple situations with the same consequences but perhaps different states
exist. This is basically the content of the Consequence and State Richness axioms (A6
and A8). As noted in Sect. 2.1, these can be thought of as structural or technical; nev-
ertheless, they are not unreasonable. To take the example discussed in Sect. 1 (in the
2-consequence version), consider the decision situation where the states of the world
are results of a horse race and the consequences are $100 or $0. In this situation the
consequences are most likely independent of the states (assuming the husband does
not know any of the horse-owners or jockeys), so that the state-independence axioms
apply and the utility of the money can be elicited using standard techniques. This
situation has the same consequences but different states from the situation where the
husband bets on the outcome of the operation, so that the former situation can be used
to elicit the utilities in the latter one. Hence Consequence Richness (A6) is satisfied in
this case. Similar examples can be given for states and State Richness (A8). All that
is required are situations with the same states (success or failure of the operation) but
consequences which are independent, so that the state-independent axioms and results
apply. Examples include situations were the consequences are gains and losses for a
friend, and the husband has a choice about the advice he gives (see also Karni 1996,
p. 256), or situations where the consequences of the husband’s bet will be “ethical”
issues, such as differing numbers of deaths in Myanmar.8 In cases such as these, the
utility of the consequence does not depend on the outcome of the operation (the state
of the world), and so the state-independence axioms apply; they show that, for the
example in Sect. 1, State Richness is satisfied.

The same points hold for the 4-consequence formulation of the decision problem.
The utility function elicited in the 4-consequence formulation will be different from
that elicited in the 2-consequence formulation because the sets of consequences on
which these functions are defined differ. Equally, the situations used to elicit them
will differ: in one case, bets on a horse race yielding monetary prizes will be involved,
in the other case, bets yielding combinations of monetary prizes with a deceased or
healthy wife will be used. Naturally, one might sometimes expect there to be relations
between the utility functions in these different situations, just as one might expect there
to be relations between the situation-dependent factors, which also differ between the
situations because of their different consequences (Sect. 3.1). Candidate relations
would ideally come in the form of equations which connect the utilities, probabilities
and state-dependent factor in one situation to those in the other situation, and which
correspond to behavioural conditions on the agent’s preferences—notably relations
between his preferences in the two situations. A simple example of such a relation

8 Thanks to Itzhak Gilboa for suggesting this example.

123



422 B. Hill

has already been mentioned. Axiom A1 presents a condition on the preferences of the
agent in situations with different but overlapping sets of consequences; as noted in
Remark 3, it ensures that the utilities on common consequences, and the values of the
situation-dependent factors on common state–consequence pairs are the same in the
different situations. A direction for future development would consist in finding and
assessing such conditions on preferences in different situations, and the correspond-
ing consequences for the relation between utilities, probabilities and state-dependent
factors in these situations.

Such a project requires a clear idea of the interpretation of the situations, and of the
differences between them. Consider once again Aumann’s example and the elicitation
of utilities by reference to situations where the agent is betting on a horse race. In the
situation with 4 consequences, the outcome of the wife’s operation is explicit in the
consequences, whereas in the situation with 2 consequences, it is not—if it plays a role
in the evaluation of the consequences, this role is at most implicit. The explicitness or
implicitness is an important aspect of the relationship between the two situations, and
may be interpreted in at least two ways.

Firstly, it may be understood as a difference in the way the problem is posed to the
agent: he has his wife’s health in mind at all times, but has to make choices where the
health of his wife is not explicitly at issue. In such cases, one might expect a princi-
pled relationship between his utilities in the 2-consequence situation and those in the
4-consequence situation. For example, he might be expected to consider each conse-
quence in the 2-consequence situation (say, $100) as a bet over pairs of consequences
in the 4-consequence situation ($100 with the wife alive and $100 with the wife dead),
so that his utility for the 2-consequence outcome is the expected utility of $100 over
his subjective probabilities about the outcome of the operation (Savage 1954, §5.5).

Alternatively, the implicitness and explicitness could be interpreted as properties
of the way the agent himself sees the problem. The 4-consequence formulation cor-
responds to the case where he is aware of the effect of the operation’s success or
failure on his utility for money; the 2-consequence formulation represents the case
where he is not aware of this effect. In this case, it is possible that his utilities, prob-
abilities and situation-dependent factor are related in the sort of principled way just
described: although he is unaware, he evaluates the options in the same way as if he
were aware. On the other hand, it more likely under this interpretation that the rela-
tionships between the utilities, probabilities and state-dependent factors in the 2- and
4-consequence situations are more complicated.9

A further point should be made about this last interpretation. There are many things
about which the agent is not necessarily certain and which could affect his utility for
money: the health of himself and his family, his plans and ambitions, his current and
future state of wealth, the relation to the state of the economy and so on. It cannot
be asked of him that he be aware of all these issues when he chooses acts yield-
ing monetary consequences; at most, they play an implicit role. So one cannot reject
the 2-consequence formulation of the husband’s decision, the situation required for

9 Awareness has recently been recognised as important in decision and game theory (Dekel et al. 2001;
Heifetz et al. 2006). So far, no accepted theory exists of the relationship between the agent’s attitudes when
he is aware and those when he is not. See Hill (2007) for an approach.
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elicitation of the utility in this formulation, and the utility elicited, on the basis that
a relevant factor—the outcome of the operation—was “left out”; for there are more
relevant factors than could ever feasibly be explicitly “brought in”. The elicitation
of utility described yields a utility function in which these factors are, so to speak,
implicitly present.

Let us remark finally that this is not the first time that situations other than the one
of immediate interest have been used in representation theorems. Examples include
Karni (2007, 2008) and Karni et al. (1983); Karni (1985). In the former cases, refer-
ence is made to the situation the agent finds himself in after having made a Bayesian
update; in the latter cases, the situations involved are hypothetical. To this extent, the
latter cases resemble the proposal here, where, as stated above, the natural interpreta-
tion of the other situations involved is as hypothetical. Indeed, some of the arguments
presented by Karni and Mongin (2000) in favour of the use of hypothetical data in
elicitation carry over to the current result; see Hill (2009) for other arguments which
are particular to sort of data involved here.

However, beyond this surface resemblance, there is an important difference between
the approaches just cited and the one taken here. There, the other situations which are
used involve the same decision problem (states and consequences) but different (hypo-
thetical or updated) beliefs, whereas in this article, we have (to the extent that the states
and consequences are shared) the same beliefs and utilities but different decision prob-
lems. This difference is crucial, for it means that the articles mentioned above involve
elicitation of attitudes with reference to preferences which are incompatible with the
preferences the agent actually has, just as for Savage’s strategy in the example dis-
cussed in Sect. 1. Here, by contrast, there is no incompatibility between the preferences
in the situations involved in the elicitation: as the previous discussion of the constancy
assumption makes clear, this point is at the core of the present approach. The sense
in which there is something hypothetical at issue is thus milder here: whereas previ-
ous approaches have considered what would happen with a different decision maker
(with hypothetical beliefs) faced with the same decision problem, we are considering
what would happen if the same decision maker were faced with a different decision
problem. As suggested above, the second sense of hypothetical is easier to overcome
in practice: it suffices to get the decision maker to choose in a decision problem in
which it is easier to elicit his attitudes.

A further consequence of this difference is that, since there is no incompatibility
among his preferences, they can all in principle be considered as “fragments” of a
(consistent) set of general preferences. From the point of view of the general prefer-
ences, the decision situations we have defined are just fragments of a large decision
problem. Since this decision problem is actual, the distinction between the hypotheti-
cal and actual decision situations disappears—they are just subsituations of one, large,
actual situation. One thus obtains a version of Theorem 2 which makes no reference at
all to hypothetical situations: a relief for those who are not convinced by the preceding
arguments in favour of the mild notion of hypothetical situation employed here. In the
final section, we detail this setup and prove a simple version of this result.
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4 Non-situational version

4.1 Preliminaries and axioms

The use of situations other than the one in which the decision maker is choosing may
be shunned. Fortunately, they are not strictly necessary for the result given above:
instead of thinking of the situations used in the result as different situations, one could
consider the sets of states, consequences and acts of each situation to be appropriate
subsets of the elements (events, consequences, acts) of some large, fixed situation in
which the decision maker is making his choice. Situations would thus be considered
to be like the “microcosms” of Savage (1954, §5.5), so the relation of their “small
world” states and consequences to any fixed “grand world” states and consequences
can be understood. Whereas the bets on the success and failure of the operation and
the bets on the horse race were considered as acts belonging to different situations
in the previous sections, here they are considered as being part of one grand world
situation, whose states specify both the outcome of the operation and the results of
the race. In this way, it is possible to formulate an equivalent to Theorem 2 in terms
of one “grand world” situation. In this section, a simple theorem of this sort is stated.
It gives a flavour of how the technique introduced in the previous sections continues
to apply in a single, grand world situation.

Let S designate the set of states of the grand world situation, X the set of outcomes,
C the set of lotteries on X , and � the preference order on the set of acts A (functions
from S to C). S and X are assumed to be finite.

To obtain a representation of the preferences and elicit unique probabilities and
utilities, the idea presented and discussed in Sects. 2 and 3 will be employed: elicit
the probabilities and utilities in related, simple, situations. By contrast to the previ-
ous sections, the situations used here will be “small world” situations with respect
to the fixed grand world situation, or if you prefer subsituations of the grand world
situation. That is, they will be situations of the form (Sσ , Cσ ,�σ ) where Sσ is a set
of events which partition S, Cσ is the set of lotteries on Xσ for some Xσ ⊆ X and
�σ is the restriction of � to acts which are constant on the elements of Sσ and which
take values in Cσ . A small world state is a grand world event; the same notation will
be used when it is treated as the former as when it is thought of as the latter. An act
f in the (small world) situation (Sσ , Cσ ,�σ ) is considered as a (grand world) act f̂ ,
where, for each s ∈ S, f̂ (s, x) = f (sσ , x), for sσ the element of Sσ such that s ∈ sσ .10

Axioms Beyond the axioms introduced in Sect. 2, the following axioms will be
required.

Axiom A12 There exists a set of sets of events on S, {Si }i∈I , such that,

(i) for each s ∈ S, there is a set {ss
i }, with one element ss

i from each Si , such that⋂
i∈I ss

i = {s};

10 This interpretation differs from Savage’s interpretation of microcosms (Savage 1954, §5.5); thus the
difference in the interpretation of small consequences, which are not grand world acts, as in Savage.
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(ii) for each Si , there exists X ′ ⊆ X such that (Si , C ′,�′) is simple (where, as
above, C ′ is the set of lotteries on X ′);

(iii) for each s ∈ S, the set {ss
i } is minimal: there is no proper subset A ⊂ {ss

i } such
that

⋂
s′∈A s′ = {s}.

Axiom A13 For each set of events S′ which partition S, if there exists X ′ ⊆ X such
that (S′, C ′,�′) is simple, then there is a unique such X ′ which is maximal under
inclusion—that is, such that there is no X ′′ ⊃ X ′ with (Si , C ′′,�′′) simple.

For each Si from A12, the set of outcomes described by A13 is denoted by Xi , the
corresponding set of consequences by Ci , and the preference order by �i .

Axiom A14 For any simple small world situation (S′, C ′,�′), if A ⊆ S′ is a null
event in (S′, C ′,�′), then

⋃
s j ∈A s j is a null event in (S, C,�).

Discussion Just as for the result in Sect. 2, two sorts of conditions are required. On
the one hand, there are standard conditions guaranteeing that the agent is a consistent
expected utility maximiser. As in the previous sections, the axiom for state-indepen-
dence (Monotonicity) is not assumed to hold in the grand world situation, but the von
Neumann-Morgenstern axioms (Weak Order, Independence and Continuity) are (see
Theorem 3). This assumption is logically stronger than the equivalent in the situational
setup (Postulate 2): the former implies the latter, because it implies that the axioms
hold in individual situations; but the former is not implied by the latter because it
involves inter-situational comparisons. Note furthermore, that, since the preference
orders in the small world situations are restrictions of a grand world preference order,
they agree on the acts they have in common, so Postulate 1 and the stronger A1 hold
automatically.

The other conditions involved in Theorem 2 guarantee that the set of situations
is suitable for elicitation of probabilities and utilities. In the theorem presented be-
low, there are no assumptions or axioms regarding consequences and utilities. This
is because the preference relations in the small world situations are derived from the
preference relation in the grand world situation, so that they agree on constant acts,
and the restriction to constant acts yields, by the von Neumann-Morgenstern theorem,
a utility function which applies in all (small world and grand world) situations. So
the use of small world situations is not required to elicit utilities; by contrast, they are
required for probabilities, and here supplementary conditions have to be imposed.

Axiom A12 is the equivalent of State Richness (A8) in the grand world situation
framework, and, as for State Richness, it is a largely structural or technical axiom.
Recall that State Richness guarantees the existence of simple situations with the same
set of states as the situation of interest; the probabilities elicited in the former situations
is used to deduce the probability in the latter. However, in the grand world version, it
is not elicitations in situations with the same set of states which are used to obtain the
probabilities in the grand world situation, but rather elicitations in subsituations; thus
one needs the existence of a set of simple small world situations which is rich enough
that, by eliciting the probabilities in the small world situations, one can deduce the
grand world probabilities. This is the role of A12. Clause (ii) implies that probabilities
can be elicited on each of the sets Si , which are the sets of states of simple small world
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situations. Clause (i) implies that these sets of small world states “cover” the set of
grand world states. Formally, this clause implies that the Boolean algebra of events of
the grand world situation is the smallest Boolean algebra containing the Boolean alge-
bras generated by the {Si }i∈I . In other words, every grand world event can be obtained
by taking appropriate intersections and unions of events in the small world situations.
If this were not the case, it would never be possible to ascertain the probabilities of
some of grand world events using just the probabilities elicited in these small world
situations.

Clause (iii) translates a simplifying assumption which is made in this section:
namely, that one can work with small world situations whose states are stochastically
independent. This assumption is at work in the proof of the theorem, although, as is
generally the case for central assumptions in representation theorems, it cannot be
stated explicitly: after all, the most natural way to express stochastic independence is
in terms of the probability function, and such a function is exactly what is to be elic-
ited. Nevertheless, this assumption has some formal consequences, and clause (iii) of
A12 is one of them. If the states are stochastically independent, then they are logically
independent (for each state s j ∈ Si , s′

j ∈ Si ′ , the intersection s j ∩ s′
j is non-empty),

and clause (iii) guarantees this. Technically, it implies that the set of states of the grand
world situation is the Cartesian product of the sets Si .

The supplementary assumption that there exists not only a set of simple small world
situations whose states cover the grand world state space but that there exists such a
set of situations whose states are stochastically independent is made here largely for
convenience. First of all, versions of the result stated below continue to hold mutatis
mutandis when this assumption is weakened appropriately. Furthermore, given that
the aim here is merely to indicate that the results in the previous sections can be
reformulated in the context of a single situation, rather than enter into complicated
technical details, the simplicity permitted by the assumption justifies its use. Finally,
the assumption is quite plausible in many contexts. Naturally, one can always invent a
grand world situation (set of states, set of consequences and preference on acts) where
the assumption of the existence of simple small world subsituations with stochastically
independent states will not hold (and in particular, where A12 is violated). However,
if, as is more often the case, one knows some of the acts, consequences and events
involved in a decision problem and one wishes to elicit attitudes, then it is usually
possible to find a model of the problem as a single grand world situation which has
the required property. Note, for example, that most of the simple situations considered
in the previous sections have stochastically independent states: the state of health of
the wife is stochastically independent of the result of the horse race, for example. The
grand world situation generated by these simple situations has a set of states which is
covered by stochastically independent sets of events.11 Indeed, what was done in pre-
vious sections can be thought of as operating in this, single, grand world situation. For
these cases, which concern us here insofar as they show that the interpretation in terms
of hypothetical situations is unnecessary, the assumption of stochastic independence
is not implausible.

11 For details on how to generate a grand world state space from small world ones, see Hill (2008).
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Axiom A13 does the job of Doxastic Consistency (A9); in fact, given the frame-
work, it is equivalent to the stronger A10 (Proposition 2). The comments made in
Sect. 2 regarding Doxastic Consistency largely hold for A13. In particular, it has
behavioural content, demanding that the agent have a certain consistency: the proba-
bilities which can be deduced from his preferences in simple situations do not depend
on the consequences and thus the simple situation used.

Finally, A14 is the equivalent in the current framework of Null Consistency (A11).
It just says that, if A as an event in the simple situation (S′, C ′,�′) is null, then it is
null as an event in (S, C,�).

4.2 Theorem

One can thus obtain an (essentially) unique representation of the preference relation
of the form (2) which agrees with the probabilities and utilities elicited in the simple
small world situations.

Theorem 3 Let S be a set of states, X a set of outcomes, C the set of lotteries over X
and � an order on A. Suppose that A2–A4 hold. Suppose furthermore that A12 holds
with set {Si }i∈I and that A13–A14 hold. Then, there exists a probability distribution
p on S, a utility function u on X, and a function γ : S × X → � such that,

• for all f, g ∈ A

f � g iff
∑

s∈S,x∈X

p(s) · γ (s, x) · u(x) · f (s, x)

≤
∑

s∈S,x∈X

p(s) · γ (s, x) · u(x) · g(s, x)

(7)

• There exist positive α and real β such that, for each x ∈ X

∑

s∈S

p(s) · γ (s, x) · u(x) = αu(x) + β (8)

• For each i ∈ I , there exists positive αi and real βi such that, for each s j ∈ Si , for
each x ∈ Xi ,

∑

s∈s j

p(s) · γ (s, x) · u(x) = αi p(s j ) · u(x) + βi p(s j ) (9)

Furthermore, if p′, u′, γ ′ is another representation satisfying (7–9), then there exist
positive real numbers a and c, and real numbers b and ds for each s ∈ S, such that
p′(s) = p(s), u′(x) = a · u(x)+ b and γ ′(s, x) = c · γ (s, x)− b · c

u′(x)
· γ (s, x)+ ds

u′(x)
,

for all s ∈ S, x ∈ X, and ds = 0 if s is null.
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Remark 4 Equation (8) corresponds to (5) of Theorem 2 insofar as it states that the
preferences on constant acts is represented by u (and that this representation is unique
up to positive affine transformation).

Equation (9) corresponds to (6) of Theorem 2 insofar as it reflects the fact that the
preference order in situations (Si , Ci ,�i ) is represented by p and u (and that this
representation is unique up to positive affine transformation of u).

Appendix

Lemma 1 A7 holds if and only if, for all C, ‖�C‖ has at most one element (up to
positive affine transformation).

Proof For any C , if there is at most one element of ‖�C‖, then all simple situations
accord the same utilities to consequences (up to positive affine transformation), and
thus to constant acts, so A7 holds.

On the other hand, if A7 holds, then using the von Neumann-Morgenstern theorem
on the preferences on constant acts, one obtains a utility function on constant acts,
and thus consequences, which applies in all situations. However, in each situation, the
utility provided by Theorem 1 must also represent the preference over constant acts,
by (3); by the uniqueness properties, such utilities must agree up to positive affine
transformation. ��
Lemma 2 A9 holds if and only if, for all S, ‖�S‖ has at most one element.

Proof Take any S, and suppose that there is at most one element of ‖�S‖. Consider
situations σ1, σ2 ∈ �S and elements a, b ∈ Xσ1 and c, d ∈ Xσ2 satisfying the condi-
tions of A9. The utilities u1 and u2 representing the orders in these situations can be
scaled so that u1(a) = u2(c) and u1(b) = u2(d). But then, for any f ∈ L({a, b})S ,∑

S,Xσ1
p(s)u1(x) f (s, x) = ∑

S,Xσ2
p(s)u2(x)τ ( f )(s, x): so the preference orders

behave as in A9.
Suppose now that A9 holds. For any σ1, σ2 ∈ �S and any a, b ∈ Xσ1 and c, d ∈

Xσ2 satisfying the conditions of A9, take the representations p1, u1 and p2, u2 with
u1(a) = 0, u1(b) = 1 and u2(c) = 0, u2(d) = 1. Consider the following acts in σ1: for
each A ⊆ S f A, with f A(s, b) = 1 for s ∈ A, f A(s, a) = 1 for s /∈ A (and f (s, x) = 0
elsewhere); for each element y of L({a, b}), the constant act gy taking the value y. Note
that p1(A) = ∑

S,Xσ1
p1(s)u1(x) f A(s, x) = inf y∈L({a,b}), f A�σ1 gy

∑
Xσ1

y(x)u1(x).
However, the image of each of these acts under τ is of the same type (respectively,
f ′

A, g′
y′), and u2 takes the same value as u1 on the images of the elements involved,

so, for all A ⊆ S, p1(A) = p2(A). ��
Proposition 1 In the presence of A1, A10 implies A9.

Proof Suppose there is more than one element in ‖�S‖ for some S. Then there are sim-
ple situations σ1, σ2 ∈ �S , with representations involving p1 and p2, where p1 �= p2.
By A10, the situation σ12 with set of states S and set of consequences Cσ1 � Cσ2 is
simple, and so has representation with probability p12. By A1, �σ1 coincides with
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�σ12 on the acts common to both situations; so by the uniqueness properties of Theo-
rem 1, they must be represented using the same probability on S. The same goes for
�σ2 : so p1 = p2, contradicting the supposition. By Lemma 2, A9 must hold. ��
Proof of Theorem 2 Existence. If σ is simple, the existence of the representation (4),
with γ (s, x) = 1 for all s, x , is given immediately by Theorem 1. By A7, A9 and
Lemmas 1 and 2, this representation satisfies the other two clauses.

Suppose σ is not simple. By A6–A9 and Lemmas 1 and 2, there is a unique proba-
bility function p and a utility function u, unique up to positive affine transformation,
satisfying (5) and (6).

By Postulate 2, a version of the von Neumann-Morgenstern theorem applies in σ

(Fishburn 1970, p. 176), giving a representation by an evaluation function U : Sσ ×
Xσ → �, unique up to simple positive affine transformation; that is, for all f, g ∈ Aσ ,

f �σ g iff
∑

Sσ ,Xσ

U (s, x) · f (s, x) ≤
∑

Sσ ,Xσ

U (s, x) · g(s, x) (10)

Pick U such that U (s, x) = 0 on the null states (if �σ has any).
Define γ the function on Sσ × Xσ such that

γ (s, x) =
{

U (s,x)
p(s) · u(x)

if p(s) �= 0
1 if p(s) = 0

By construction and by A11, (4)–(6) hold.
Uniqueness. The uniqueness properties of p and u follow from the application of

Theorem 1 to the situations in �S and �C . Moreover, as noted above, U is given
up to simple positive affine transformation. So, for another representation p′, u′, γ ′,
there are a, b, a′ and b′

s for each s ∈ Sσ , with a and a′ positive, such that, for all
s ∈ Sσ , x ∈ Xσ , p′(s) = p(s), u′(x) = a · u(x) + b and p(s) · γ ′(s, x) · u′(x) =
a′·p(s)·γ (s, x)·u(x)+b′

s . Substituting for u and solving forγ ′, one obtains the required
result, with c = a′

a and ds = bs
p(s) when p(s) �= 0 and ds = 0 when p(s) = 0. ��

Proposition 2 A13 holds if and only if A10 does.

Proof Suppose A10 but not A13. Since X is finite, for each S′ partitioning S, there is
no infinite ascending chain X0 ⊂ X1 ⊂ . . . with X j ⊆ X for all j and (S′, C j ,� j )

simple for all j . So, if A13 is not satisfied, there must be a S′ partitioning S and X1
and X2 with X1 �= X2 such that (S′, C1,�1) and (S′, C2,�2) are simple, and X1
and X2 are maximal. But, by A10, X12 = X1 ∪ X2 also yields a simple situation
(S′, C12,�12), contradicting the maximality of X1 and X2.

Suppose A13, and consider any pair of simple small world situations (S′, C ′
1,�′

1)

and (S′, C ′
1,�′

1), for sets of outcomes X ′
1 and X ′

2. Since X ′
1, X ′

2 ⊆ X ′, the maximal set
mentioned in A13, X ′

3 = X ′
1 ∪ X ′

2 ⊆ X ′, and since �′
3 coincides with �′ on common

acts, (S′, C ′
3,�′

3) is simple; so A10 holds. ��
Proof of Theorem 3 The proof proceeds in much the same way as that of Theorem 2.

123



430 B. Hill

Existence. By A2–A4, a version of the von Neumann-Morgenstern theorem can
be applied (Fishburn 1970, p. 176), yielding an evaluation function U : S × X → �
which is unique up to similar positive affine transformation. If � has null states, then
pick U such that U (s, x) = 0 on the null states. Let u be the restriction of U to con-
stant acts. That is, u(x) = ∑

s∈S U (s, x). Note that u is unique up to positive affine
transformation.

By A12–A13 and Theorem 1, for each Si , there is a unique (Si , Xi ,�i ) with Xi

maximal, and a unique pi and ui , unique up to positive affine transformation, repre-
senting �i . That is, for all f, g ∈ Ai ,

f �i g iff
∑

s j ∈Si ,x j ∈Xi

pi (s j ) · ui (x j ) · f (s j , x j )

≤
∑

s j ∈Si ,x j ∈Xi

pi (s j ) · ui (x j ) · g(s j , x j ) (11)

Since both ui and u represent the constant acts taking values in Ci , they are positive
affine transformations of each other. The orders �i are thus represented (in the sense
of equation (11)) by pi and u.

By A12, for each s ∈ S, there exists a unique set {ss
i }i∈I , si ∈ Si , with s = ⋂

i∈I ss
i .

Define p on S as follows:

p(s) =
∏

i∈I

pi (s
s
i ) (12)

Finally, define γ to be the function on S × X such that

γ (s, x) =
{

U (s,x)
p(s) · u(x)

if p(s) �= 0
1 if p(s) = 0

By construction and by A14, p, u and γ satisfy (7). Therefore
∑

s∈S p(s) ·γ (s, x) ·
u(x) represents the restriction of � to constant acts. By the uniqueness properties of
u, as a representation of this order, there is a positive real number α and a real number
β such that

∑
S p(s) ·γ (s, x) ·u(x) = α ·u(x)+β for all x ∈ X . Thus (8) is satisfied.

In a similar way, for each i ∈ I , both p, γ and u, and pi and u represent �i : the first
via (7), the second with (11). But, by construction of p, pi (si ) = ∑

s∈si
p(s) = p(si ).

Thus, by the uniqueness of the probability and the uniqueness, up to positive affine
transformation, of the utility in the representation of �i , there exists a positive real
number αi and a real number βi such that, for each s j ∈ Si , x ∈ X :

∑
s∈s j

p(s) ·
γ (s, x) · u(x) = αi · pi (s j ) · u(x) + βi pi (s j ) = αi · p(s j ) · u(x) + βi · p(s j ). So (9)
is satisfied.

Uniqueness. The uniqueness properties of p follow from Theorem 1 and A13, and
the uniqueness properties of u from the von Neumann-Morgestern theorem applied
to constant acts. Moreover, as noted above, U is unique up to simple positive affine
transformation. So, for another representation p′, u′, γ ′, there are a, b, a′ and b′

s
for each s ∈ S, with a and a′ positive, such that, for all s ∈ S, x ∈ X , p′(s) =
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p(s), u′(x) = a · u(x) + b and p(s) · γ ′(s, x) · u′(x) = a′ · p(s) · γ (s, x) · u(x) +
b′

s . Substituting for u and solving for γ ′ as in the proof of Theorem 2, one obtains

γ ′(s, x) = a′
a γ (s, x) − b · a′

a · γ (s,x)
u′(x)

+ b′
s

p(s) · u′(x)
, and thus the required result, with

c = a′
a and ds = bs

p(s) when p(s) �= 0 and ds = 0 when p(s) = 0. ��
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