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Abstract

A theory of incomplete preferences under uncertainty is proposed, according to

which a decision maker’s preferences are indeterminate if and only if his confidence

in the relevant beliefs does not match up to the stakes involved in the decision. We use

the model of confidence in beliefs introduced in Hill (2010), and axiomatise a class

of models, differing from each other in the appropriate notion of stakes. Compara-

tive statics analysis can distinguish the decision maker’s confidence from his attitude

to choosing in the absence of confidence. Under one interpretation, indeterminacy

of preferences can be behaviourally understood as a case where the agent defers, if

a deferral option is available. We consider the case where deferral is not possible,

providing an axiomatic analysis of the relationship between the decision maker’s pref-

erences in the presence and absence of a deferral option. Finally, we consider the

consequences of the model in markets, where a common case of deferral is deferral

to the status quo, which amounts to refusal to trade. The incorporation of confidence

as proposed here appears to add extra friction, beyond the standard implications of

non-expected utility models for Pareto optima.
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1 Introduction

1.1 Proposal and motivation

“If you’re not sure, say so”. This simple maxim has mixed fortunes in decision theory.

On the one hand, standard theories ignore it. They assume that, if forced to choose between

two options, a decision maker will be able to choose one of them, and that this choice indi-

cates or is determined by the decision maker’s preferences over the options. Consequently,

they assume that the decision maker’s preferences are entirely determinate, or, as it is often

put, that they are complete: he always has a (weak) preference for one of the options over

the other. On the other hand, many recent theories of incomplete preferences fully embrace

the maxim. In the context of decision under uncertainty, the most popular theory, the una-

nimity multi-prior model à la Bewley (2002), represents decision makers’ beliefs by sets of

probability measures, and hence can accommodate indeterminacy of probabilistic belief.

Preferences are indeterminate when the beliefs do not allow a unequivocal judgement that

the expected utility of one act is greater than that of the other.

However, in some ways, this theory is too naïve. First of all, according to it, the decision

maker is either sure of a probabilistic belief or entirely unsure of it: it either holds for

all probability measures in the set or it does not. The model cannot represent decision

makers who are more sure of some beliefs than others, without being totally sure or unsure.

Accordingly, the theory cannot allow consideration of how sure the decision maker has

to be to form a preference. However, it seems that people often do, and should, form

determinate preferences on the basis of beliefs in which there are not entirely sure in some

situations – in particular, when little is at stake in the decision – whereas there are other

situations – when the decision is more important, for example – in which they may need to

be more sure of their beliefs to avoid indeterminacy. Indeed, the following refinement of

the maxim above appears to be a more appropriate guide to when preferences are or should

be indeterminate: “if you are not sure enough, say so”.

The aim of this paper is to propose a theory of decision under uncertainty which cor-
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responds to this refined maxim. The theory can be summed up in the following principle:

one’s preferences are indeterminate when and only when one’s confidence in the beliefs

needed to form the preference does not match up to the stakes involved in the decision.

Like the standard Bewley model, it is the decision maker’s beliefs which drive the inde-

terminacy of preferences; it is tacitly assumed that the decision maker is fully confident in

his utilities. Extension to cases where confidence in beliefs and confidence in utilities are

accounted for is a topic for further research.

To get a better intuition for the proposal, it is of course useful to consider behaviour

that conforms to it, and this brings in the subtle question of the interpretation of incom-

plete preferences in choice behaviour. Although the theory proposed here applies to any

interpretation, we shall take as our leading interpretation the following simple, though oft

ignored way for indeterminacy of preference to come out in choices: the decision maker

refrains from choosing any of the options. People sometimes have the opportunity to defer

a decision: to abstain from choosing any of the options on offer, thus leaving the decision

open, to be taken, perhaps, by their later selves, or by someone else, or by nature. In this

last case, the consequence will be that which is achieved if no action is taken, and hence

deferral is tantamount to choosing the status quo (when there is one). It is a natural intuition

that one reason to defer is because of a lack of – or indeterminacy in – preference.1

Under this interpretation of indeterminacy, the theory yields an account of deferral that

can be summarised in the following maxim: defer when and only when one’s confidence in

the beliefs needed to make a choice does not match up to the stakes involved in the choice

to be made. To illustrate, consider a junior portfolio manager at a hedge fund, who cur-

rently has on his desk a portfolio consisting of stocks in a market that is not his speciality.

He may be able to consult a senior, if not to just transfer the portfolio to her; this is tanta-

mount to deferring the decision. The theory proposed here allows him to defer the decision

1Let us emphasise that whilst this interpretation of indeterminacy highlights one reason to defer – namely,

that one is simply not sure what to choose – there are other reasons to defer – based, for example, on consider-

ation of the utilities, information or beliefs of others, one’s expectations about one’s future utilities or beliefs,

or one’s evaluation of the status quo option – some of which have been treated elsewhere in the literature.

Hence, under the interpretation in terms of deferral, the current proposal yields an account of only one aspect

of deferral, which would need to be developed further to accommodate other considerations. For a discussion

of the relationship to other reasons for deferral, as well as an extension to the case of deferral from menus,

see Hill (2011, Section 5).
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concerning a portfolio in a market with which he is not familiar whilst taking a decision

on a portfolio in a market with which he is more familiar, although not an expert, but in a

situation that, in all other respects, is identical to the first. In the latter situation, where he

is confident enough in his judgement, it is reasonable to take the decision; however, in the

former situation, where he lacks sufficient confidence, it is better to be less audacious and

defer. Likewise, comparing two situations where the portfolios are in the same market with

the same composition, but differ only in the importance of the client, there may be cases

where the portfolio manager defers the decision concerning the prized client, but takes a

decision in the case of the less important client. Whilst it would be overly cautious for him

to defer when his confidence suffices for the less important decision, it would be exces-

sively audacious to take the more important decision when this level of confidence does

not match the higher stakes involved. These examples suggest that, as well as being nor-

matively plausible, the account of incomplete preference, under the interpretation in terms

of deferral, may also be descriptively reasonable in several situations.

To develop a theory of decision based on the maxim that one’s preferences are indeter-

minate when and only when one’s confidence in the beliefs needed to form the preference

does not match up to the stakes involved in the decision, we use several notions introduced

in Hill (2010). The decision maker’s confidence in his beliefs is represented by a nested

family of sets of probability measures, called a confidence ranking. Each set in the nested

family corresponds to a level of confidence, with larger sets corresponding to higher levels

of confidence. A set in the confidence ranking determines a set of probability judgements,2

namely those which hold for every probability measure in the set. This is interpreted as the

set of probability judgements that the decision maker holds with the corresponding level of

confidence. Moreover, the decision maker has a function that associates to each decision

a set of probability measures in the confidence ranking, called a cautiousness coefficient.

Since a set in the confidence ranking corresponds to a level of confidence, the cautiousness

coefficient can be thought of as assigning the level of confidence required in beliefs for

them to play a role in the decision in question. It is defined in such a way that it picks out

the same set of probability measures for all decisions having the same stakes; as such, it

can be thought of as picking out the appropriate level of confidence entirely on the basis

2By probability judgement, we mean a statement concerning probabilities, such as “the probability of

event A is greater than p”.
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of the stakes involved in the decision. Both of these are subjective elements in the model,

representing the decision maker’s confidence in his beliefs and his attitude to choosing in

the absence of confidence respectively (see Section 4 below). For extended discussion of

these notions, the reader is referred to Hill (2010).

As concerns stakes, one can imagine several different notions, each of which purports

to determine what counts as the stakes in a decision on the basis of various aspects of that

decision (see Section 2.2 for some examples). Each such notion of stakes establishes an

order on decisions according to whether the stakes involved in them are higher or lower.

Rather than considering a particular notion of stakes, we assume a stakes relation on the set

of decisions that satisfies several weak properties, and perform our analysis on the basis of

such a relation. Hence the representation result established here in fact applies to a family of

notions of stakes, namely all those which generate stakes relations satisfying the specified

properties. To the extent that each notion of stakes yields a different decision model, we

thus provide an axiomatic treatment for a class of models of incomplete preferences.

In the main result of the paper, we give necessary and sufficient conditions for a repre-

sentation of the following form: for all Anscombe-Aumann acts f and g, f ¨ g if and only

if

¸
sPS

upfpsqq.ppsq ¤
¸
sPS

upgpsqq.ppsq for all p P Dppf, gqq(1)

where u is a von Neumann-Morgenstern utility function andD is a cautiousness coefficient

for a confidence ranking Ξ. This is a representation of an incomplete preference relation¨.

Under the leading interpretation suggested above, preference between elements is under-

stood in the standard way (f   g is interpreted as saying that the agent chooses g between

f and g, and similarly for the weak order and indifference), but cases where there is no

preference between acts are interpreted in terms of deferral: if neither f ¨ g nor f © g,

then the decision maker defers the choice between f and g.

That this representation captures the maxim stated above can be seen as follows. First

of all, note that Dppf, gqq is the set of probability measures associated with the choice

between acts f and g, and depends entirely on the stakes involved in this choice. It indicates

the confidence level associated to those stakes; the only probability judgements in which

the decision maker is confident enough for them to play a role in the decision are those
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which hold for all probability measures in Dppf, gqq. Under representation (1), g is weakly

preferred to f if and only if, based only on these probability judgements, the decision

maker can conclude that the expected utility of g is at least as high as that of f . So if, on

the basis of these probability judgements, the decision maker can conclude neither that g

has expected utility at least as high as f nor that f has expected utility at least as high as g,

then he has no preference between them. In other words, his preferences over a pair of acts

are indeterminate if he is not confident to the degree required by the stakes involved in the

decision that one act is at least as good as the other.

Beyond relating indeterminacy of preference to confidence and the stakes involved in

a choice, the model allows comparative statics analyses, which elucidate the role of the

different elements in the model. In particular, from the agent’s preferences at different

stakes levels, one can elicit information about his confidence in his preferences. This notion

can shed some light on the factors involved in an agent’s decisiveness – that is, in how

determinate his preferences are.

The interpretation of indeterminacy in terms of deferral leads naturally to the ques-

tion of what the decision maker would do in cases where deferral is not an option. It is

straightforward to extend the framework to encompass such cases, by adding a complete

preference relation, representing preferences in the absence of a deferral option. By con-

sidering conditions on the relationship between preferences in the presence and absence of

a deferral option, a simple representation of the latter preferences may be obtained.

Finally, the interpretation of indeterminacy of preferences in terms of deferral to the

status quo amounts, in market settings, to an interpretation in terms of reluctance to trade.

What consequences does representation (1) have in such settings? Consideration of this

question would help put into perspective the importance of the relationship between confi-

dence, stakes and indeterminacy of preference which underlies the representation.

The basic notions of the model are introduced and formally defined in Section 2, and

the representation result is given in Section 3. In Section 4, we perform a comparative

statics analysis of decisiveness. In Section 5, we consider the question of preferences in

the absence of a deferral option. In Section 6, we consider the consequences of the model

in markets under uncertainty. Proofs of all results are to be found in Appendix A.

In the rest of the Introduction, we discuss the relation to existing literature.
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1.2 Related literature

Bewley (2002) was the first to axiomatise a “unanimity” representation of an incom-

plete preference relation over Anscombe-Aumann acts by a utility function and a set of

probability measures, according to which there is a preference between acts if the expected

utilities of the acts lie in the appropriate relation for all the probability measures in the set.

To the extent that Bewley takes the strict preference relation as primitive, whereas we take

the weak preference relation as primitive, our representation is technically closer to the

unanimity representation used by Gilboa et al. (2010).3 As noted above, this model cannot

capture differing degrees of confidence, and hence it does not have the richness to capture

the effect of the stakes involved in the decision on the degree of confidence required of be-

liefs to play a role in it, and on whether preference is determinate or not. The representation

(1) can thus be thought of as a generalisation of the unanimity representation, replacing a

single fixed set of probability measures by a family of sets, where the set of measures used

varies depending on the stakes involved in the decision.

Representation (1) belongs to a family of decision models which use the representation

of the agent’s state of belief by a confidence ranking and are based on the idea that different

sets of probability measures may be used in the evaluation of options, according to the

stakes involved. This family was introduced and motivated in Hill (2010). There it was

noted that members of the family differ along two dimensions: the decision rule which

determines preferences on the basis of a set of probability measures and a utility function,

and the notion of stakes. This paper deals mainly with the unanimity decision rule discussed

above. By contrast, it remains fairly agnostic as regards the stakes: Theorem 1 axiomatises

a family of models, namely those where the decision rule is the unanimity rule and the

notion of stakes generates a stakes relation satisfying the basic properties laid out in Section

2.2. Moreover, Theorem 2 can be thought of as providing foundations for another class of

models belonging to the same family: namely the class of models where the decision rule

is the maxmin expected utility rule and the notion of stakes is as above (see Remark 3,

Section 5). As such, this paper can be thought of as a complement to Hill (2010), exploring

different fragments of the family introduced there.

3The representation in Gilboa et al. (2010) differs from representation (1) above by replacing Dppf, gqq

with a fixed set of probability measures; the representation in Bewley (2002) differs moreover in replacing

the weak preferences and orders by strict preferences and orders.
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Nau (1992) has proposed a theory of incomplete preferences which is similar to rep-

resentation (1) in content and motivation. Besides the difference in framework (he uses

the de Finetti framework), presentation (he uses confidence-weighted upper and lower con-

ditional probabilities on random variables) and conceptualisation (the distinction between

stakes and confidence is not fully brought out, and the notion of cautiousness coefficient is

absent), the essential difference is that he assumes a particular notion of stakes, whereas we

do not. As discussed in Section 2.2 (see in particular Remark 1), there is a sense in which

his theory is a member of the family axiomatised here, and so this paper is a generalisation.

Faro (2009) has proposed an extension of Bewley’s representation by incorporating

a real-valued function on the space of probabilities measures, in a way inspired by the

variational preferences model of Maccheroni et al. (2006). Lehrer and Teper (2011) have

proposed a representation involving sets of sets of probability measures, where an act is

preferred to another if it has a higher expected utility for all probability measures in at least

one of the sets. There are significant differences from the current proposal in the represen-

tation of preferences (in particular, the notion of the stakes of a choice plays no role in these

models), the concepts involved and how they are modelled, and the axiomatic properties

(in particular, both of these models employ more severe weakenings of transitivity than

used here). Faro (2009) also considers the relation to the variational preferences model, in

a manner similar to our treatment of the relation to preferences in the absence of deferral

in Section 5.

Seidenfeld et al. (1995); Nau (2006); Ok et al. (2008); Galaabaatar and Karni (2010)

have explored extensions of Bewley’s representation involving sets of probabilities and sets

of utilities. As concerns the interpretation in terms of confidence in beliefs and confidence

in utilities, the points made above hold in general. As stated previously, it remains to ex-

plore decision theories which incorporate confidence in beliefs and confidence in utilities.

The question of choice in the absence of deferral is technically related to Gilboa et al.

(2010), Kopylov (2009) and Nehring (2009), who provide representation results on pairs of

binary relations, where one is complete, the other is represented according to the unanim-

ity representation described above, and they are represented by the same utility function

(in the case of the first two papers) and related or identical sets of probability measures.

Whereas Kopylov (2009) uses an interpretation of the two relations that is similar to that

employed in Section 5 of this paper, Gilboa et al. (2010) and Nehring (2009) use differ-
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ent interpretations: they consider the relations to correspond to objective and subjective

rational preferences, or beliefs and preferences respectively. Although Gilboa et al. (2010),

like us, propose a representation of the second relation in terms of the maxmin expected

utility representation (Gilboa and Schmeidler, 1989), Kopylov (2009) considers a special

case (ε-contamination set of priors) and Nehring (2009) develops results for a larger class

of models (invariant bi-separable preferences). All these authors work with single sets of

probability measures, rather than confidence rankings. A final, axiomatic, difference is

that, as well as axioms concerning the relationship between the two preference relations,

they all impose axioms other than completeness on the complete preference relation (gen-

erally, at least transitivity and continuity). By contrast, here, the only axiom imposed on

preferences when deferral is not an option is completeness. Accordingly, the main new ax-

iom used here (Benchmark on certainty, Section 5) is stronger that the main “connecting”

axioms used, for example, by Gilboa et al. (2010) (Caution or Default to certainty). In the

case of a degenerate confidence ranking (containing a single set of probability measures),

our Theorem 2 thus provides a new axiomatisation of the representation obtained in their

Theorems 3 and 4.

Finally, the interpretation of indeterminacy of preference in terms of sticking to a status

quo option used in Section 6 has been considered by Bewley (2002), under the name of the

‘inertia assumption’. Bewley (1989) was the first to consider consequences for trade, and

Rigotti and Shannon (2005) undertake a thorough analysis of markets involving decision

makers with unanimity preferences. Billot et al. (2000) and Rigotti et al. (2008) consider

markets involving decision makers with complete non-expected utility preferences.

2 General preliminaries

2.1 Framework

Throughout the paper, we use the standard Anscombe-Aumann framework (Anscombe

and Aumann, 1963), as adapted by Fishburn (1970). Let S be a non-empty finite set of

states, with Σ the algebra of all subsets of S, which are called events. ∆pΣq is the set

of probability measures on pS,Σq. Where necessary, we use the Euclidean topology on

∆pΣq. X is a nonempty set of outcomes; a consequence is a probability measure on X

with finite support. ∆pXq is the set of consequences. Acts are functions from states to

9



Brian Hill Incomplete preferences and confidence

consequences; A is the set of acts. So, for an act f , and a state s, fpsq is a lottery over X

with finite support; for a utility function u over X , we will denote the expected utility of

this lottery by upfpsqq �
°
xPsupppfpsqq fpsqpxqupxq. A is a mixture set with the mixture

relation defined pointwise: for f , h inA and α P <, 0 ¤ α ¤ 1, the mixture αf �p1�αqh

is defined by pαf � p1� αqhqps, xq � αfps, xq � p1� αqhps, xq (Fishburn, 1970, Ch 13).

We write fαh as short for αf � p1 � αqh. With slight abuse of notation, a constant act

taking consequence c for every state will be denoted c and the set of constant acts will be

denoted ∆pXq.

We assume a preference relation on A, denoted by ¨. � and   are the symmetric and

asymmetric components of ¨, and � is the “determinate preference” relation, defined as

follows: f � g iff f ¨ g or f © g.4 So f � g means that the decision maker does not

have determinate preferences between f and g; under the interpretation suggested in the

Introduction, he defers the choice between these two acts.

2.2 Stakes

As mentioned in the Introduction, a central idea in this paper is the importance of the

stakes involved in a choice for the decision made. To capture the stakes, we use a stakes

relation that, for each pair of (binary choice) decisions the decision maker may be faced

with, specifies which has higher stakes or whether the stakes involved in them are the

same. That is, we assume a binary relation ® on the set of pairs of acts (A � A) – the

stakes relation – which is interpreted as follows: pf, gq ® pf 1, g1q means that the stakes

involved in the choice between f and g are (weakly) lower than the stakes involved in the

choice between f 1 and g1. � and   are the symmetric and asymmetric components of ®,

defined in the standard way. We assume that the stakes relation satisfies the following basic

properties.

(Weak Order) ® is reflexive, transitive and complete.

(Symmetry) For all f, g P A, pf, gq � pg, fq.

(Extensionality) For all f, f 1, g, g1 P A, if fpsq � f 1psq and gpsq � g1psq for all s P S,

then pf, gq � pf 1, g1q.

4Of course, if ¨ is complete, then f � g for all f and g.
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(Continuity) For all f, f 1, g, g1, h P A, the sets tpα, βq P r0, 1s2| pfαh, gβhq ¯ pf 1, g1qu

and tpα, βq P r0, 1s2| pfαh, gβhq ® pf 1, g1qu are closed in r0, 1s2.

(Richness) For all f, f 1, g, g1 P A such that fpsq � gpsq for some s P S and f 1psq � g1psq

for some s P S, there exists h, h1 P A and α, α1 P p0, 1s such that pfαh, gαhq ®

pf 1, g1q ® pfα1h
1, gα1h

1q.

Weak order states that the binary choices which the agent may be faced with may be

weakly ordered according to the stakes involved in them. We take this to be a basic property

of the notion of stakes, and accept it without discussion here.5

Symmetry states that the stakes involved in a choice only depend on the alternatives

available, irrespective of the order in which they are presented, and deserves no further

discussion.

Extensionality states that all that counts for the stakes are the values of the consequences

of the acts at the different states. If two acts are extensionally equivalent – that is, the

decision maker is indifferent between the consequences of two acts at every state – then in

virtually all formal theories of decision under uncertainty, they are treated (and evaluated)

in exactly the same way. Extensionality says that whenever two pairs of acts are related

in this way, they have the same stakes. Note that extensionality involves reference to the

decision maker’s preferences over constant acts. This is to be expected: the stakes involved

in a choice depend on how “good” and “bad” the consequences of the various options are in

particular instances, and of course, how “good” and “bad” they are depends on the decision

maker’s evaluation. Indeed, many plausible notions of stakes which come to mind make

reference at least to the decision maker’s utility function, if not also to part of his confidence

ranking (see the examples below). It is thus entirely natural for the stakes relation to respect

some aspects of his utility function.

On mixing a pair of acts with a third act, the stakes involved in a choice may change;

Continuity says that this change is continuous in the degree of mixing. This seems reason-

able: the stakes may be altered as one or both of the acts on offer are mixed with another act,

but one would not expect the stakes to “jump” as the mixture coefficient moves gradually

from one value to another.
5See Hill (2009, Section 3.2) for a discussion of the possibility of weakening the completeness property

in a different but related framework.

11



Brian Hill Incomplete preferences and confidence

Richness is a largely technical property, which states that the stakes involved in a choice

between different acts can be shifted as far up or down the stakes order as desired, by mixing

the pair of acts appropriately. There is a sense in which (in particular in the presence of an

independence axiom; see Section 3) the choice between f and g and the choice between

fαh and gαh are the “same” choice. Nevertheless, the stakes involved in these two choices

may differ; to that extent, the latter choice can be thought of as a “version” of the former

choice, but at the stakes level corresponding to pfαh, gαhq rather than pf, gq. Hence, using

such mixtures, one can consider the decision maker’s preferences at different stakes levels;

in what follows, we will say that the decision maker prefers f to g at a certain stakes level

if he prefers fαh to gαh for some α and h such that pfαh, gαhq has that level of stakes.

Richness simply states that for any (non-trivial) choice and stakes level, there is a version

of the choice, obtained by mixing with a third act, which has stakes above the level in

question, and there is a version which has stakes below that level. The intuition is that

mixing with a third act can change many of the properties of a pair of acts, and in particular

the main properties that are relevant for the stakes involved in the choice between them.

Note that “trivial” choices – between an act and itself, or, given extensionality, between an

act and one which is extensionally equivalent to it – have a “place” on the stakes ordering.

Nevertheless, under some notions of stakes, such choices have a special status, for example

as always having minimal stakes (this is the case for some of the examples mentioned

below). For this reason, richness does not apply to such choices, for it unclear, on the one

hand, whether the stakes in such a choice can be altered to any value by mixing and, on the

other hand, whether, by mixing, one can always shift the stakes in the choice between two

acts to the level of stakes involved in a choice between an act and itself.

As noted in Hill (2010, Section 4), there are many notions of stakes that can be pro-

posed, each of which generates a particular stakes relation. The results below can be

thought of as characterising a class of decision models, where the members of the class

differ on the notions of stakes, but all of which use notions of stakes that generate stakes

relations satisfying the five properties above. The weaker these properties, the more notions

of stakes satisfy them, and the wider the results apply. To illustrate the generality of the

results, and the weakness of the properties, note that the following natural notions of stakes
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all yield relations satisfying the properties above:6 the stakes in the choice between f and

g are given by

(i) the maximum of the negation of the utility of the least preferred consequence which

could be obtained, taken over f or g

(ii) the maximum utility of the most preferred consequence which could be obtained by

f or g

(iii) the maximum of the difference between the utility of the least preferred consequence

and the utility of the most preferred consequence which could be obtained, taken

over f or g

(iv) the probability that either of f or g takes a value below some threshold, calculated

using a given probability measure (possibly taken from the decision maker’s confi-

dence ranking).

Remark 1. Consider the following notions of stakes: the stakes in the choice between f

and g are given by

(v) the difference between the utility of the least preferred consequence which could

be obtained by f and the utility of the least preferred consequence which could be

obtained by g

(vi) the maximum absolute value of the difference between the utility of fpsq and the

utility of gpsq, taken over s P S

(vii) the difference between the expected utilities of f and g, calculated using a given

probability measure (possibly taken from the decision maker’s confidence ranking).

It is straightforward to check that these notions generate stakes relations satisfying all

of the properties above except for richness. However, they do satisfy the following weaker

richness condition:
6Richness is satisfied by these notions of stakes under the assumption that the utility function is un-

bounded; the weakening of richness discussed in Remark 1 is still satisfied in the absence of this assumption.
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(Richness’) For all f, f 1, g, g1 P A such that fpsq � gpsq for some s P S and f 1psq �

g1psq for some s P S, there exists pf2, g2q, pf3, g3q P }pf, gq} such that pf2, g2q ®

pf 1, g1q ® pf3, g3q

where }pf, gq} is the set of pairs of acts pf 1, g1q which can either be obtained from f and

g by mixing them in the same proportion with another act, or such that f and g can be

obtained from f 1 and g1 by such a mixture.7 Rather than demanding that every (non-trivial)

pair of acts can be shifted as far up or down the stakes ordering as desired by mixing with

a third act, Richness’ simply asks that, for every (non-trivial) pair of acts and stakes level,

there is a pair of acts below (respectively, above) that level, such that either the latter pair

can be obtained from the former pair by mixing, or the former can be obtained from the

latter by mixing. It evidently retains the intuition behind the original richness property –

in particular, the pairs in }pf, gq} correspond to versions of the choice between f and g

but with potentially different stakes. Moreover, with a corresponding modification to the

axioms in Section 3, one can prove a result analogous to (but stronger than) Theorem 1 for

stakes relations satisfying the first four properties above and richness’. To avoid burdening

the reader with notation, we do not present such a result here, and work with the original

richness property.

Note finally that the theory proposed by Nau (1992) is essentially a member of the class

of representations of the form (1) which takes as stakes notion (vi). Hence the result just

mentioned contains Nau’s as a special case.

Remark 2. Defining the stakes relation on pairs of acts as done here is the simplest, but far

from the only possibility. It could also have been defined on triples in A � A � Γ, where

Γ can have several interpretations. For example, Γ can be understood as a set of context

indices; hence dependence of the stakes on the context can accommodated. Alternatively,

Γ could be interpreted as the status quo, if there is one; using this relation, one can capture

dependence of the stakes on the status quo. It is straightforward to adapt the properties

above to such stakes relations; the corresponding modifications in the axiomatisation below

yield an axiomatisation of representation (1) where the stakes depend on factors other than

the two acts on offer.
7The formal definition is as follows: for all f 1, g1 P A, pf 1, g1q P }pf, gq} if and only if there exists

α P p0, 1s, h P A such that f 1psq � pfαhqpsq and g1psq � pgαhqpsq for all s P S, or fpsq � pf 1αhqpsq and

gpsq � pg1αhqpsq for all s P S.

14



Brian Hill Incomplete preferences and confidence

2.3 Confidence ranking and cautiousness coefficient

Here we recall two notions that were introduced in Hill (2010).

Definition 1. A confidence ranking Ξ is a nested family of closed, convex subsets of ∆pΣq.

A confidence ranking Ξ is continuous if, for every C P Ξ, C �
�
C1�C C

1 �
�
C1�C C

1.8 It

is centered if
�

CPΞ C is a singleton.9

As mentioned in the Introduction, confidence rankings represent decision makers’ be-

liefs, and in particular their confidence in probability judgements. The sets in the confi-

dence ranking can be thought of as corresponding to levels of confidence. The higher the

level of confidence in question, the larger the set: this translates the fact that one is confi-

dent of fewer probability judgements to that level of confidence. Confidence rankings are

ordinal structures, in the sense that they correspond to specific types of weak orders on the

space of probability measures (Hill, 2010, Proposition 2). The convexity and closedness of

the sets of probability measures in the confidence ranking are standard assumptions in de-

cision rules involving sets of probabilities. The continuity property guarantees a continuity

in one’s confidence in probability judgements: it ensures, for example, that one cannot be

confident up to a certain level that probability of an event A is in r0.3, 0.7s and then only

confident that the probability is in r0.1, 0.9s at the “next” confidence level. All confidence

rankings considered in this paper will be continuous (and so continuity will often be as-

sumed in discussion without being explicitly mentioned). Finally, a decision maker with a

centred confidence ranking is one who, if forced to give his best estimate for the probability

of any event, could come up with a single value (and these values satisfy the laws of proba-

bility), although he may not be very confident in it. We do not assume confidence rankings

to be centred in general; in the representation result, there is an axiom that is necessary and

sufficient for the confidence ranking to be centred, so this property receives a behavioural

characterisation.

The second notion required is that of a cautiousness coefficient for a confidence ranking

Ξ, which is defined to be a surjective function D : A � A Ñ Ξ that preserves ®; that is,

such that for all pf, gq, pf 1, g1q P A�A, if pf, gq ® pf 1, g1q, thenDppf, gqq � Dppf 1, g1qq. D

assigns to any pair of acts the level of confidence that is required in probability judgements

8For a set X , X is the closure of X . Note that the union of a nested family of convex sets is convex.
9This definition is identical to Hill (2010, Definition 2), except for a slight weakening of the notion of

centeredness.
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in order to be used in the choice between the acts. This level of confidence corresponds

to the appropriate set of probability measures in the confidence ranking. The fact that

D preserves the stakes ordering ® implies, first of all, that D assigns a confidence level

to a choice solely on the basis of the stakes involved in that choice: two pairs of acts

with the same stakes (according to ®) are assigned to the same set of probability measures.

Moreover, order-preservation is faithful to the intuition that the higher the stakes, the higher

the confidence level required of probability judgements for them to play a role in the choice

(and so the larger the relevant set of probability measures). Surjectivity of D basically

attests to the behavioural nature of the confidence ranking: it implies that for each set of

probability measures in the ranking, there will be a level of stakes, and hence a choice, for

which it is the relevant set for that choice. For further discussion of confidence rankings,

cautiousness coefficients and their properties, see Hill (2010).

3 Representation

Consider the following axioms on ¨.

Axiom A1 (Determinate utilities). For all c, d P ∆pXq, c � d.

Axiom A2 (Non triviality and reflexivity). ¨ is non-trivial and reflexive.

Axiom A3 (Stakes-transitivity). For all f, g, h, e, e1 P A, α, β P p0, 1s such that pf, hq ®

pfαe, gαeq or fpsq � gpsq for all s P S, and pf, hq ® pgβe
1, hβe

1q or gpsq � hpsq for all

s P S, if fαe ¨ gαe and gβe1 ¨ hβe
1, then f ¨ h.

Axiom A4 (Independence). For all f, g, h P A and for all α P p0, 1q such that f � g and

fαh � gαh, f ¨ g if and only if fαh ¨ gαh.

Axiom A5 (Monotonicity). For all f, g P A, if fpsq ¨ gpsq for all s P S, then f ¨ g.

Axiom A6 (Consistency). For all f, g, h P A and α P p0, 1q such that pfαh, gαhq ® pf, gq,

if f � g, then fαh � gαh.

Axiom A7 (Continuity). For all f, g, h P A, the set tpα, βq P r0, 1s2 | fαh ¨ gβhu is closed

in r0, 1s2.
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Axiom A8 (Continuity in stakes). For all f P A and c, e P ∆pXq with f © c ¡ e, if

there exists h P A and α P p0, 1q with pfαh, eαhq ¡ pf, cq, then there exists h1 P A and

α1 P p0, 1q with pfα1h1, eα1h1q ¡ pf, cq such that fα1h1 © eα1h
1.

Axiom A9 (Centering). For all f, g P A, there exist h P A and α P p0, 1s such that

fαh � gαh.

Non-triviality and reflexivity (A2) and Monotonicity (A5) are entirely standard and call

for no further comment. Continuity (A7) is a slight strengthening of the standard continuity

axiom, and is related to axioms used elsewhere in the literature on incomplete preferences

(see, for example, Dubra et al. (2004)). Indeed, in the presence of transitivity, independence

and monotonicity, this axiom is equivalent to the standard one (see in particular Gilboa et al.

(2010, Lemma 3)). Determinate utilities (A1), which is called C-completeness by Gilboa

et al. (2010), simply says that preferences over constant acts are determinate. It translates

the fact that the agent is assumed to be fully confident in his utilities; as stated in the

Introduction, only confidence in beliefs is at issue here.

As concerns Stakes-transitivity (A3), note firstly that transitivity in the case of incom-

plete preferences involves two distinct conditions: firstly, if f ¨ g and g ¨ h, then one has

determinate preferences between f and h; secondly, these preferences go in the appropri-

ate direction – that is, f ¨ h. However, the former condition may seem too strong. For

example, under the leading interpretation proposed in the Introduction, it implies that, if

the decision maker makes the appropriate choices between f and g and between g and h,

then he cannot defer the decision between f and h. Stakes-transitivity essentially weak-

ens the first clause of the standard transitivity property, whilst retaining its second clause.

More precisely, except for cases where f and g or g and h are extensionally equivalent,

it demands determinate preference between f and h only when the decision maker’s pref-

erences between f and g and between g and h are determinate for stakes higher than the

stakes in the choice between f and h;10 it allows preferences to be indeterminate if this is

not the case. In terms of the deferral interpretation, stakes-transitivity allows the decision

maker to defer the choice between f and h even if he chooses f over g and g over h; but

this is allowed only when one of the latter two decisions is less important than the former

one. A decision maker may prefer spending $10 on a bet on a certain ambiguous event to
10Recall from the discussion of richness in Section 2.2 that preferences at different stakes levels are given

by preferences over appropriate mixtures of the acts in question.
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his current portfolio, no matter what his current portfolio is; transitivity (applied repeated)

implies that he prefers spending $10 000 on 1000 bets on this same event to his current

portfolio, whereas stakes-transitivity allows indeterminacy of preferences for this choice,

insofar as the stakes are higher than for a single $10 bet. Moreover, the axiom implies

that, whenever preferences are determinate, they go in the direction implied by the stan-

dard transitivity axiom. So, to the extent that one can speak of “violations” of the standard

transitivity axiom, they never result in acyclic preferences, but only in indeterminacy of

preference between options where transitivity would have implied a determinate prefer-

ence. Indeed, if preferences are complete, stakes-transitivity is equivalent to transitivity, in

the presence of independence.11

A similar situation holds for Independence (A4). Whereas the standard independence

axiom implies, firstly, that certain preferences are determinate, and secondly, they go in

a certain direction, the independence axiom used here simply states that whenever pref-

erences are determinate, they go in the direction specified by the standard independence

condition. Evidently it fully retains the intuitions of the standard axiom, and is equiva-

lent to it in the case of complete preferences; indeed, it can be thought of as an alternative

way of extending the traditional independence axiom to the case of incomplete preferences,

which separates the part of the standard axiom concerning determinacy of preference from

the part concerning direction of preference.

Consistency (A6) is perhaps the most novel axiom and naturally so: it deals with the

relation between choices at different stakes levels. It says that, if preferences between

f and g are determinate, then preferences will be determinate between any mixtures of

f and of g, as long as the stakes are not higher. In other words, if one has determinate

preferences between two options at a given stakes level, then as the stakes fall, one retains

the determinacy of the preferences. If you can choose between the options when there are

hundreds of thousands of dollars at stake, then one can still choose when there are only

11As anticipated in Section 1.2, the mildness of this weakening of transitivity is a major difference between

the current model and other models of incomplete preferences that seek to go beyond the unanimity model

à la Bewley. For example, one can imagine a model with a second-order probability measure instead of

a confidence ranking, and according to which there is a preference between acts if the probability that the

expected utility of one act is greater than that of the other is above a certain threshold; such a model involves

more serious violations of the transitivity axiom. Riella and Teper (2011, Theorem 2) axiomatise a model

similar to that just described, with the threshold applied to first-order rather than second-order probabilities.
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tens of thousands at stake. As such, it is this axiom in particular which translates the idea

that the higher the stakes, the more confidence is needed to take the choice. This is a fully

behavioural axiom, which is in principle testable by, for example, comparing decisions

to defer at different stakes levels. (Of course, the other axioms discussed so far are as

behavioural as their standard counterparts.)

Of the final two axioms, Continuity in stakes (A8) is a largely technical axiom. It states

that, whenever an act f is preferred to a constant act c, then as the stakes in the choice are

gradually increased (supposing they are not maximal), the act may no longer be preferred

to c, but the most preferred constant act to which it is preferred will not suddenly “jump”

down with a slight increase in stakes. In other words, this axiom states that the set of

constant acts in the lower contour set of an act changes gradually with an increase in the

stakes involved in the decision.

The final axiom, Centering (A9), is not required for the representation in general, but

corresponds to the centeredness property of the confidence ranking. It states that, for any

pair of acts, if the stakes are low enough in the choice between them, the decision maker’s

preferences over them are determinate. If there is sufficiently little at stake, the decision

maker will hazard a choice, in which he may not be very confident.

These axioms are necessary and sufficient for the desired representation of preferences.

Theorem 1. The following are equivalent.

(i) ¨ satisfies A1-A8,

(ii) there exists a nonconstant utility function u : X Ñ <, a continuous confidence

ranking Ξ and a cautiousness coefficient D : A�AÑ Ξ such that, for all f, g P A,

f ¨ g iff

¸
sPS

upfpsqq.ppsq ¤
¸
sPS

upgpsqq.ppsq for all p P Dppf, gqq(1)

Furthermore, for any other nonconstant utility function u1, continuous confidence rank-

ing Ξ1 and cautiousness coefficient D1 representing ¨ according to (1), there exists a posi-

tive real number a and a real number b such that u1 � au� b, Ξ1 � Ξ and D1 � D.

Finally, under the conditions above, A9 is satisfied if and only if Ξ is centred.
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4 Attitudes to choosing in the absence of confidence

In this section, we undertake a basic comparative statics analysis for the model proposed

above. Throughout the section, we assume a fixed stakes relation ®.

Models of incomplete preferences admit a particularly simple comparison of decision

makers, in terms of the completeness of the preference relation. For decision makers 1 and

2, if 2 (weakly) prefers f to g whenever 1 does, this is an indication that 2 is less prone to

indeterminacy of preference than 1. In terms of the leading choice-based interpretation of

indeterminacy proposed in the Introduction, this indicates that 1 is more prone to defer, and

less prone to decide, than 2. Formally, we say that ¨1 is less decisive than ¨2 if ¨1�¨2.12

In order to characterise this relation in terms of the elements of the model, we require

the relation � on families of sets, defined as follows. For two families of sets Ξ and Ξ1,

we write Ξ � Ξ1 when, for every C P Ξ, there exists C 1 P Ξ1 with C � C 1. We have the

following result.

Proposition 1. Suppose that ¨1 and ¨2 satisfy axioms A1–A8, and are represented by

pu1,Ξ1, D1q and pu2,Ξ2, D2q respectively. The following are equivalent:

(i) ¨1 is less decisive than ¨2

(ii) u2 is a positive affine transformation of u1, Ξ2 � Ξ1 and D2ppf, gqq � D1ppf, gqq

for all pf, gq P A2.

Besides the utility functions, the main two elements in this result are the confidence

ranking and the cautiousness coefficient. However, they may be understood as playing

different roles. Consider two decision makers with the same utility function. Decision

maker 1 has unanimity preferences à la Bewley: his confidence ranking contains a single

set of probability measures C and the cautiousness coefficient sends all pairs of acts to that

set. Decision maker 2, by contrast, has a rich confidence ranking Ξ, with many sets of

probability measures, and an appropriate cautiousness coefficient, sending different pairs

of acts to different sets. As long as C 1 � C for all C 1 P Ξ, 1 will be less decisive than 2.

However, there seems to be something more precise to say about the relationship between

the two decision makers. In particular, it appears that, on the one hand, 1 is less sensitive
12Containment of the preference relations is equivalent to saying that, for all f, g P A, if f ©1 g then

f ©2 g.
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to the importance of decisions than 2 – if he prefers f over g at a given stakes level, then he

has the same preference at any stakes level, no matter how high – but, on the other hand, 1

is confident of fewer beliefs than 2. In other words, there seems to be an aspect of beliefs

(how confident one is of certain beliefs) as well as an aspect of taste (how willing one is

to decide on the basis of beliefs in which one has a certain amount of confidence) mixed

together in Proposition 1. To tease them apart, let us introduce the notion of confidence in

preferences.

Definition 2. Let ¨ satisfy axioms A1–A8. We define the confidence in preferences re-

lation ¤ on A2 as follows: for any f, g, f 1, g1 P A, pf, gq ¤ pf 1, g1q iff, for all α, α1 P

p0, 1s, h, h1 P A such that pfαh, gαhq � pf 1α1h
1, g1α1h

1q:

fαh © gαhñ f 1α1h
1 © g1α1h

1.

Definition 2 relies on the observation that, if a decision maker prefers f 1 to g1 at a given

stakes level but has indeterminate preferences between f and g at that level, then this can

be taken as an indication that he is more confident in his preference for f 1 over g1 than in

his preference for f over g.13 In other words, one can extract information about a decision

maker’s confidence in his preferences from the extent to which he hold specific preferences

at given levels of stakes. This is done according to the simple principle: the preferences

that the decision maker holds at higher stakes are those in which he is more confident.

Given these considerations, we shall say that two decision makers are confidence equiv-

alent if they have the same confidence in preferences.

Definition 3. Let ¨1 and ¨2 be preference relations satisfying the axioms A1–A8. ¨1 and

¨2 are confidence equivalent if ¤1�¤2.

Proposition 2. Let ¨1 and ¨2 be preference relations satisfying the axioms A1–A8, and

represented by utility functions, confidence rankings and cautiousness coefficients pu1,Ξ1, D1q

and pu2,Ξ2, D2q respectively. ¨1 and¨2 are confidence equivalent iff u2 is a positive affine

transformation of u1, and Ξ1 � Ξ2.

13Recall from the discussion of richness in Section 2.2 that talk of preferences at different stakes levels is

spelt out formally in terms of preferences over appropriate mixtures.
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This proposition confirms that a decision maker’s confidence in his preferences is en-

tirely determined by his utilities over consequences and his belief state (including his con-

fidence in beliefs). This is to be expected: to the extent that preferences are determined

by utilities and beliefs, it is reasonable that confidence in preferences be determined by

confidence in utilities – which is trivial in this model, because of the use of a single utility

function – and confidence in beliefs, represented by the confidence ranking. The notion

of confidence in preferences also helps shed light on the example above: decision mak-

ers 1 and 2 obviously have different confidence in preferences, and it is this difference, as

much as any difference in attitude to choosing in the absence of confidence, that yields the

difference in decisiveness. In fact, once differences in confidence in beliefs are accounted

for, by comparing decision makers who have the same confidence in preferences, decisive-

ness is entirely determined by the cautiousness coefficient, as the following corollary of

Propositions 1 and 2 shows.

Corollary 1. Suppose that¨1 and¨2 satisfy axioms A1–A8, are confidence equivalent, and

are represented by pu,Ξ, D1q and pu,Ξ, D2q respectively. The following are equivalent:

(i) ¨1 is less decisive than ¨2

(ii) D2ppf, gqq � D1ppf, gqq for all pf, gq P A2.

In summary, one can compare decision makers’ decisiveness, that is, the pairs of acts

for which they have determinate preferences. In the absence of any condition on the deci-

sion makers, a decisiveness ordering corresponds to identical utilities (up to positive affine

transformation) and appropriate orders on the confidence rankings and cautiousness coeffi-

cients. Furthermore, one can derive a decision maker’s confidence in preferences from his

preferences. Decision makers with the same confidence in preferences are precisely those

who share the same utilities (up to positive affine transformation) and confidence in beliefs,

represented by a confidence ranking. Finally, for decision makers with the same confidence

in preferences, comparison in terms of decisiveness corresponds precisely to the appropri-

ate relation between their cautiousness coefficients. To the extent that such decision makers

have the same confidence, differences in decisiveness between them must come down to

differences in their attitudes to choosing on the basis of limited confidence. Accordingly, a

decision maker’s cautiousness coefficient captures precisely his attitude to choosing in the

absence of confidence.
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5 Absence and presence of the option to defer

In the previous sections, we have considered incomplete preferences, and proposed a choice-

theoretic interpretation of indeterminacy of preference as taking an option to defer – to

someone else, to one’s later self, or to a status quo – that was assumed to be always present.

In reality, of course, deferral is not always an option: it is not always true that one can leave

the decision to someone else or until later, or that there is always a status quo. It is thus

natural to ask, given the decision maker’s preferences in the presence of a deferral option,

what can be said about his preferences when deferral is not an option. In this section, we

propose a framework for considering this question, and provide a simple axiomatic answer.

In order to consider choices in the presence and absence of the option to defer, the

most natural framework consists of two binary relations, ¨d and ¨n, over the set of acts.

The relation ¨d represents the decision maker’s preferences in the presence of a deferral

option, whereas the relation ¨n represents his preferences in the absence of a deferral

option. The issue of his preferences in the presence and absence of deferral, as well as of

the relationship between these preferences, can be tackled by considering axioms on the

preference relations and the relationship between them, such as the following.

Axiom B1 (Deferral). ¨d satisfies A1-A8.

Axiom B2 (Forced choice). ¨n is complete.

Axiom B3 (Benchmark on certainty). For all f, g P A, if there is no c P ∆pXq such that

fαh ©
d cαh but gα1h1 «d cα1h

1 for some h, h1 P A and α, α1 P p0, 1s with pfαh, cαhq �

pgα1h
1, cα1h

1q � pf, gq, then g ¢n f .

The first two axioms state basic properties of the preferences in the presence and ab-

sence of a deferral option. Deferral (B1) states that the decision maker’s preferences in

the presence of a deferral option satisfy the axioms proposed and discussed in Section 3.

Forced choice (B2) states that, in the absence of deferral, preferences are complete. Under

the leading interpretation proposed above, cases of indeterminacy of preference are under-

stood as cases where the decision maker defers; by demanding that the preferences in the

absence of deferral (¨n) are complete, this axiom translates the fact that deferral is not

possible.

The final axiom, Benchmark on certainty (B3), concerns the relationship between the

decision maker’s preferences in the presence and absence of a deferral option. Preferences
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in the presence of a deferral option provide a crude indication of the relative worth of

different acts (for the decision maker); one way of getting a more refined judgement is

by considering how the acts compare to constant acts. Thus, even if the decision maker

would defer the choice between two acts, say f and h, he may decide in favour of h over a

particular constant act (for example, a sure $5), whilst not choosing f over that act (in cases

where these decisions have the same stakes as the decision between f and h). Benchmark

on certainty demands that only in such cases may he strictly prefer h over f when deferral

is not an option. In other words, it states that if an act does not fair favourably with respect

to another when compared to constant acts and deferral is an option, it cannot be strictly

preferred when deferral is not an option. This axiom characterises a form of conservative

decision making, insofar as only the constant acts that the decision maker considers worse

than the acts in question when deferral is an option count in determining preferences when

deferral is not an option.

These axioms are necessary and sufficient for the following joint representation of pref-

erences in the absence and presence of deferral.

Theorem 2. The following are equivalent.

(i) ¨d and ¨n satisfy B1-B3,

(ii) there exists a nonconstant utility function u : X Ñ <, a continuous confidence

ranking Ξ and a cautiousness coefficient D : A�AÑ Ξ such that, for all f, g P A,

(a) f ¨d g iff

¸
sPS

upfpsqq.ppsq ¤
¸
sPS

upgpsqq.ppsq for all p P Dppf, gqq(1)

(b) f ¨n g iff

min
pPDppf,gqq

¸
sPS

upfpsqq.ppsq ¤ min
pPDppf,gqq

¸
sPS

upgpsqq.ppsq(2)

Furthermore, for any other nonconstant utility function u1, continuous confidence rank-

ing Ξ1 and cautiousness coefficient D1 representing ¨d and ¨n according to (1) and (2),

there exists a positive real number a and a real number b such that u1 � au � b, Ξ1 � Ξ

and D1 � D.
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The axioms imply a simple relationship between the decision maker’s preferences in

the presence and absence of a deferral option. Whereas, in the presence of a deferral

option, the decision maker prefers an act to another if and only if it has higher expected

utility according to all the probability measures in the set corresponding to the level of

confidence appropriate for the stakes involved in the choice, in the absence of deferral, it

is the relationship between the minimum expected utilities over the same set of probability

measures which determines his preference. In other words, whereas in the presence of

deferral, he prefers an act to another if he is sufficiently confident in the relevant probability

judgements, when he is forced to decide, he chooses the act that has the highest worst-case

expected utility, given the judgements in which he has sufficient confidence.

As discussed in Section 1.2, the representation, as well as the setup in terms of two

preference relations, is similar to that proposed by Gilboa et al. (2010). As they note,

replacing the main axiom – in the current case, Benchmark to certainty (B3) – by other

axioms may yield representations using sets of probability measures which differ from

those used in the evaluation of preferences in the presence of deferral. Similarly, one may

obtain representations involving the same set of probability measures, but different rules,

such as the maxmax expected utility rule or the α-maxmin expected utility rule. To this

extent, Theorem 2 can be thought of as one of a family of representations of the relationship

between preferences in the presence and in the absence of deferral; exploration of other

members of the family is a task for future research.

Remark 3. As Gilboa et al. (2010) note, their result can be thought of as providing a novel

foundation for the maxmin representation of Gilboa and Schmeidler (1989). Similarly,

Theorem 2 provides foundations for a class of preferences which belong to the family iden-

tified in Hill (2010), namely those preferences using the maxmin expected utility decision

rule and a notion of stakes which yields a stakes relation satisfying the properties given in

Section 2.2. This is the first axiomatisation of this class of preferences, to the knowledge

of the author.14

14Note in particular that the model considered in Hill (2010), although it uses the same decision rule, does

not belong this class: there the stakes are a function of a single act, whereas here the stakes are a function of

pairs of acts.
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6 Confidence and indeterminacy in markets

As a further exploration of the wider implications of the model, we briefly consider some

consequences for risk sharing in financial markets. Recall the leading interpretation of in-

determinacy of preferences in terms of deferral, where one possible sort of deferral consists

of taking a status quo option, if present. A status quo is present in a market setting: it is

simply the option of not trading. Bewley (1989) and Rigotti and Shannon (2005) have

considered the consequences of the unanimity model (à la Bewley) in a market setting, in-

terpreting indeterminacy of preferences as the choice of not trading; we do the same here

for preferences represented according to (1).

We consider a standard Arrow-Debreu exchange economy with a complete set of (non-

negative) state-contingent commodities on a finite state space S. The set of actsA is defined

as in Section 2.1, with the set of outcomes specified by X � <�. A state-contingent

commodity is a vector in <S�, and can be naturally assimilated with the corresponding

element in A.15 The economy has finitely many agents, indexed by i � 1 . . . n. Each has

preferences ¨i over A (and hence over <S�), represented as in (1) for a stakes relation ®i.

Each agent has thus a utility function ui : <� Ñ <, a confidence ranking Ξi on S and a

cautiousness coefficient Di. We assume that all ui are differentiable, strictly concave and

strictly increasing. Note that, since expected utility preferences and unanimity preferences

à la Bewley are special cases of (1), the economy may contain agents with these sorts of

preferences. The aggregate endowment is e P <S��. Finally, an allocation px1, . . . , xnq P

p<S�qn is said to be feasible when
°
i x

i � e, and it is interior if xis ¡ 0 for all i and s.

Definition 4. An allocation py1, . . . , ynq Pareto dominates the allocation px1, . . . , xnq if,

for each agent i, either yi ¡i xi or yi � xi.

A feasible allocation px1, . . . , xnq is Pareto optimal if there is no feasible allocation that

Pareto dominates it.
15State-contingent commodities correspond to acts whose consequences are degenerate lotteries; <S� thus

corresponds to a proper subset ofA. Nevertheless, thanks to the continuity of the utility function, every lottery

over <� (ie. element of ∆pXq) has a certainty equivalent in <�, so, given the utility function, preferences

over A are completely determined by preferences over <S�. Hence, although we assume preferences over

A, this is equivalent in this setup to assuming preferences over <S�; similarly, properties of preferences can

be formulated either in terms of A or <S�. We continue to use the notation introduced in Section 2, and in

particular the generic symbols f, g . . . for acts; we use standard vector notation and generic symbols x, z . . .

for commodities.
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This notion of Pareto optimality is very close to that studied by Fon and Otani (1979).

The notion of Pareto dominance employed says that an allocation dominates another ex-

actly when all agents who trade contingent commodities strictly prefer their new commod-

ity to their old one. This is a natural notion in the context of incomplete preferences where

indeterminacy is interpreted in terms of sticking to the status quo: it supposes that agents

who do not have strict preference for trade – either because they consider the commodity on

offer not to be better than what they have, or because they do not have sufficient confidence

to form determinate preferences – stick to their initial endowment.

For technical reasons, we make several assumptions on the notions of stakes and on

the preferences. Since they are tangential to the general discussion in this section, they

are simply noted here; statement of the relevant properties and discussion are relegated to

Appendix B.

Assumption 1. For each 1 ¤ i ¤ n, the stakes relation ®i is monotone decreasing, and the

preference relation ¨i satisfies indifference consistency and full support.

Under this assumption, we have a characterisation of Pareto optima. For a contingent

commodity x P <S� and an agent i, let16

Πipxq �

#�
pps1qu

i1pxs1q°
tPS pptqu

i1pxtq
, . . . ,

pps|S|qu
i1pxs|S|q°

tPS pptqu
i1pxtq

�
| p P

£
z�x

ripDipx, zqq

+

Theorem 3. Under Assumption 1, an interior allocation px1, . . . , xnq is Pareto optimal iff�
i Π

ipxiq � H.

The intuition behind this result is analogous to similar results in the literature (Rigotti

and Shannon, 2005; Rigotti et al., 2008): Πipxq is the set of supports of the strict upper

contour set of x under ¨i, and an allocation is Pareto optimal if and only if the intersection

of all such sets is non-empty. The theorem has several immediate consequences. Recall

that an allocation px1, . . . , xnq is a full insurance allocation if all the xi are constant.

Corollary 2. Let Assumption 1 hold, and suppose that the aggregate endowment is constant

across states.
16For a set A, ripAq is the relative interior of A. Note that, if A is a singleton, ripAq � A.

27



Brian Hill Incomplete preferences and confidence

(i) An interior full insurance allocation px1, . . . , xnq is Pareto optimal iff�
i

�
z�xi ripD

ipxi, zqq � H.

(ii) If, for each i, there exists Ci with Ξi � tCiu, then there exists an interior full insur-

ance Pareto optimal allocation iff
�
i ripCiq � H. In this case, every full insurance

allocation is Pareto optimal.

The first corollary, which is a simple consequence of the fact that Πipxiq ��
z�xi ripD

ipxi, zqq when xi is constant, is a general characterisation of when an interior

full insurance allocation is Pareto optimal in the model proposed here. It is in the style

of existing results, such as Billot et al. (2000); Rigotti and Shannon (2005); Rigotti et al.

(2008). Unlike these cases, the existence of a full insurance Pareto optimal allocation does

not imply that all full insurance allocations are Pareto optimal, because, in general, the

relevant sets of probability measures may differ depending on the constant commodity.

The second corollary involves the special case of representation (1) where the confi-

dence ranking is degenerate: this is essentially the unanimity model of preferences à la

Bewley. The result differs slightly from that of Rigotti and Shannon (2005, Corollary 2),

which also concerns the Bewley model, insofar as their result involves the intersection of

the sets of probability measures of the different agents, whereas ours uses the intersections

of their relative interiors. This difference is due to the fact that they take the strict prefer-

ence relation as primitive, use a slightly different representation from that used here and

take a stricter notion of Pareto optimality.17

Comparing the two corollaries brings out the relationship between the case of represen-

tation (1) and that of the unanimity model à la Bewley. Concerning the question of whether

an interior full insurance allocation is Pareto optimal or not, an economy with agents repre-

sented by (1) is roughly equivalent to an economy where each agent is replaced by an agent

with unanimity preferences à la Bewley, who takes as his set of probability measures the

intersection of all the sets in his confidence ranking that are relevant for choices involving

the commodity he is allocated.18 Grosso modo, if each agent in the economy for whom

more confidence is required to take decisions with higher stakes simply ignored the stakes,

and always chose as if the stakes were at the lowest possible level for the commodity he

17They use the representation axiomatised by Bewley (2002); see Section 1.2.
18This is a rough statement because, for a family tCi| i P Iu of closed sets, it is not necessarily the case

that
�
iPI ripCiq � ri

�
iPI Ci.
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is allocated, this would make little difference to whether the allocation is Pareto optimal

or not. Although it does not follow that the set of Pareto optima would be the same as

for an economy containing only agents with preferences à la Bewley, because the relevant

sets of probability measures may depend on the allocation, this highlights some similari-

ties between economies with agents à la Bewley and economies with agents who choose

according to representation (1).

Things are considerably different, however, regarding the question of how fast Pareto

optima can be reached. (To the extent that, as noted in the proof of Theorem 3, Pareto

optima correspond to appropriately defined equilibria, this is closely related to the question

of how fast the economy can arrive at equilibrium.)19 There is often a simple, if idealised,

fastest way to achieve a Pareto optimum. In particular, whenever a non-Pareto optimal

allocation px1, . . . , xnq is dominated by a (feasible) Pareto optimal one py1, . . . , ynq, then

there is a “one-step” move to a Pareto optimum, which is acceptable to all agents – namely,

each agent swaps xi for yi. (This set of “swaps” corresponds to a set of simultaneous

trades between the agents.) Whenever this is the case, we say that py1, . . . , ynq is one-step

accessible from px1, . . . , xnq. In economies where agents have expected utility preferences,

preferences à la Bewley or preferences represented by many of the standard non-expected

utility theories proposed in the literature (and in particular those considered by Rigotti

et al. (2008)), any Pareto dominated allocation is Pareto dominated by a Pareto optimum;

in other words, any allocation has a Pareto optimum that is one-step accessible from it. This

is not necessarily true for economies containing agents represented by (1), as the following

example shows.

Consider a two-agent economy with two states of the world, s1 and s2, and suppose that

each agent i has constant relative risk aversion γi (so the utility function is uipxq � x1�γi

1�γi

if γi � 1 and uipxq � lnx if γi � 1). Agent 1’s preferences are represented by (1),

where the stakes in the choice between x and y are given by maxs |xpsq � ypsq|.20 He has

19Rigotti and Shannon (2005) address a related question with their notion of “equilibrium with inertia”,

which, approximately, is an equilibrium which Pareto dominates the initial endowment. The example below

shows that, by contrast with economies whose agents have preferences à la Bewley, equilibria with inertia

may not exist, even if equilibria do exist, in economies whose agents have preferences represented by (1).
20As noted in footnote 15, although the stakes relation is defined on contingent commodities, this yields

a well-defined stakes relation on acts. It is straightforward to check that this relation satisfies the properties

given in Section 2.2, and is monotone decreasing.
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the following centred confidence ranking: ttp P ∆pΣq| 0.5 � ε ¤ pps1q ¤ 0.5 � εu| ε P

r0, 0.45su. Note that since each set in the confidence ranking is uniquely specified by an

ε P r0, 0.45s, the cautiousness coefficient is entirely specified by a function from pairs

of acts to values of ε. Using this formulation, the cautiousness coefficient is given by

D1ppx, yqq � mintηmaxs |xpsq � ypsq|, 0.45u for η ¡ 0, where η characterises the agent’s

attitude to choosing in the absence of confidence (see Section 4). Agent 2 is an expected

utility decision maker with probability measure assigning 0.5 to both states.

We consider a case with no aggregate risk in the economy: the sum of allocations is w

in both states. Hence allocations are of the form ppδ1w, δ2wq, pp1 � δ1qw, p1 � δ2qwqq for

δ1, δ2 P r0, 1s. It is easy to check, given Theorem 3, that the only Pareto optima are full

insurance allocations. Now consider the risky endowment px1, x2q � ppδw, p1�δqwq, pp1�

δqw, δwqq, where δ P p1
2
, 1s. It would seem that a natural “one-move” trade yielding a

Pareto optimal allocation would be for 2 to give 1 pp1
2
� δqw, pδ � 1

2
qwq. It is easy to

check that p1
2
w, 1

2
wq ¡2 pp1 � δqw, δwq. Moreover,

°
s ppsqu

1p1
2
wq ¡

°
s ppsqu

1px1
sq for

all p P
�
x1�x1 ripD1ppx1, x1qq. Were the agents to ignore the stakes and always choose as if

the stakes were at their lowest level, this would be sufficient for the trade to be acceptable

to both agents: that is, for the full insurance allocation p1
2
w, 1

2
wq to be one-step accessible

from px1, x2q. However, if they take the stakes into account as specified by representation

(1), there is a stronger requirement for the trade to be acceptable to agent 1, namely that°
s ppsqu

1p1
2
wq ¥

°
s ppsqu

1px1
sq for all p P D1ppx1, 1

2
wqq, with strict inequality for some

p. By straightforward calculation, this condition holds if and only if21

(3) p ¤
1
2

1�γ1

� p1� δq1�γ
1

δ1�γ1 � p1� δq1�γ1 for all p P D1ppx1,
1

2
wqq

Hence, by the definition of D1, 1
2
w £1 x1 whenever

(4) mintηwpδ �
1

2
q, 0.45u � 0.5 ¡

1
2

1�γ1

� p1� δq1�γ
1

δ1�γ1 � p1� δq1�γ1

This inequality has solutions for various values of the parameters: it is straightforward

to check, for example, that when γ1 � 2, δ � 3
4
, w � 1500, η � 0.001, the inequality

is satisfied and so 1
2
w £1 x1. In such cases, the Pareto optimum p1

2
w, 1

2
wq is not one-step

21Here we consider the case where γ1 � 1; the case of γ1 � 1 can be treated similarly.
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accessible from px1, x2q. In fact, by a similar argument, one can show that there are cases

where no Pareto optimal allocation is one-step accessible from px1, x2q.

Proposition 3. There may exist allocations from which no Pareto optimal allocation is

one-step accessible.

This phenomenon is basically a consequence of the dependence on stakes in represen-

tation (1), which allows agents to have determinate preferences at low stakes levels that

they may withdraw at higher stakes levels. Whereas it is the former preferences – and in

particular the probability measures corresponding to low levels of stakes – which determine

whether an allocation is Pareto optimal or not, the latter preferences – and the associated

larger sets of probability measures – determine whether an agent accepts a given trade or

not. If all agents were indifferent to the stakes, and formed preferences using minimal sets

of probabilities (as if the stakes were at their lowest level), then any Pareto dominated al-

location would indeed be Pareto dominated by a Pareto optimal one. However, whenever

there is an agent who takes account of the stakes via representation (1), he may not be

confident enough in his strict preference for that Pareto optimal allocation over his initial

endowment to choose the former at the appropriate level of stakes, and so sticks to the

status quo. He refrains from trading, and the “one-step” move to that Pareto optimum is

blocked.

We have already mentioned one interpretation of this result in terms of maximal speed

of convergence. It indicates a non-trivial bound on how fast a Pareto optimal allocation can

be reached: allowing any conceivable way of constructing a set of simultaneous trades (as

unfeasible as it may be in practice), it may still be impossible to get to a Pareto optimum

by a single set of trades if the market contains agents who incorporate confidence into their

preferences, and who do not trade when they lack sufficient confidence. Another interpre-

tation is in terms of the restrictions placed on the (theoretical) power of a social planner.

In standard general equilibrium models, as well as the market under uncertainty models

mentioned above, a suitably intelligent social planner who knows the agents’ preferences

could propose a set of simultaneous trades that would be accepted by all agents and that

would bring the market to a Pareto optimum. This relies on the fact that, in these models,

all allocations have a Pareto optimum that is one-step accessible. That this is not necessar-

ily the case in the current model attests to the limited influence of such a social planner:

even if he had all the information about preferences (and infinite computational power), the
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social planner might not be able to propose a set of simultaneous trades which leaves the

economy in a Pareto optimum and is acceptable to all. The agents’ tendency to demand

more confidence in beliefs when the stakes are higher mean that he may not be able to

persuade some of them to shift from the endowment to a Pareto optimal allocation when

the stakes involved in the change are high, though they would have accepted the trade if the

stakes were low. Confidence, combined with the status quo interpretation of indeterminacy

of preference, can hinder (Pareto-enhancing) intervention in the market.

The natural question is, of course: how fast can a Pareto optimum be reached? Put in

terms of the second interpretation offered above, this amounts to asking how many times a

social planner has to intervene to bring the economy to a Pareto optimum. Let us say that a

feasible allocation py1, . . . , ynq ism-step accessible from px1, . . . , xnq if there is a sequence

of m � 1 feasible allocations, the first of which Pareto dominates px1, . . . , xnq, the last of

which is Pareto dominated by py1, . . . , ynq, and each of which is Pareto dominated by its

successor. A Pareto optimum which is not one-step accessible may be m-step accessible:

this means that, under ideal conditions, it can be reached not with a single set of trades

that is acceptable to all, but rather after m consecutive sets of trades acceptable to all. If,

for a given allocation, there is a Pareto optimum that is m-step accessible and none that is

m1-step accessible for m1   m, this can be thought of as a lower bound on the how fast the

economy can come to a Pareto optimum: it requires at least m sets of simultaneous trades.

A social planner has to intervene at least m times. There is, however, no general lower

bound that applies to all allocations in all economies.

Proposition 4. There may exist allocations from which no Pareto optimal allocation is

m-step accessible, for any finite m.

When there are agents whose preferences incorporate their confidence in beliefs, and

who stick to the status quo when they do not have enough confidence to take a choice, it

may thus be theoretically impossible for the market to arrive at a Pareto optimal allocation

in finite time. Because, quite simply, there may not exist a finite sequence of sets of trades,

where all agents have sufficient confidence to accept the trades and where the sequence

reaches a Pareto optimum. Confidence, combined with taking the status quo option – and

not trading – when one is not sufficiently confident in any option, adds considerable friction

into the economy.
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7 Conclusion

People may be more or less confident in their beliefs; moreover, they may have incomplete

preferences. In this paper, a theory which relates incompleteness of preferences to confi-

dence in beliefs was proposed. It is based on the following maxim: one has a determinate

preference over a pair of acts if and only if one’s confidence in the beliefs needed to form

the preference matches up to the stakes involved in the choice between the acts. In the

absence of sufficient confidence, preferences are indeterminate.

A formal decision rule conforming to this maxim was proposed. The decision maker’s

confidence in his beliefs is modelled by a confidence ranking – a nested family of sets of

probability measures. A cautiousness coefficient assigns to any decision a level of confi-

dence relevant for that decision (represented formally by a set in the confidence ranking),

which is determined by the stakes involved. The decision rule according to which one act

is preferred to another if it has higher expected utility according to all the probability mea-

sures in the appropriate set was axiomatised. Moreover, comparative statics analysis of the

relative decisiveness of decision makers, as well as of their confidence in preferences, was

undertaken, and the cautiousness coefficient was seen to correspond to the decision maker’s

attitude to choosing in the absence of confidence.

Under one possible interpretation, indeterminate preference can be understood in terms

of deferral, be it to someone else, to one’s later self, or to a status quo. In order to consider

the consequences of the theory in situations where deferral is not an option, a preference

relation was introduced representing preferences in the absence of a deferral option. An

axiomatic account of the relationship between the decision maker’s preferences in the pres-

ence and absence of a deferral option was proposed.

Finally, possible consequences of the model in a market setting were considered, where

indeterminacy of preferences was interpreted in terms of refusal to trade. On the one hand, a

characterisation of Pareto optima was provided, and the relationship to analogous results for

other decision models was discussed. On the other hand, it was shown that there may exist

Pareto dominated allocations that are not dominated by any Pareto optimum. It follows

that, in markets with agents incorporating confidence into their preferences and refusing

to trade when they are not confident enough to form a determinate preference, it may be

theoretically impossible for the market to come to a Pareto optimum by a single set of

trades accepted by all. Moreover, there are cases where no finite sequence of sets of trades,
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accepted by all, can bring the market to a Pareto optimum.

A Proofs

Throughout the Appendix, B will denote the space of all real-valued functions on S, and

bapSq will denote the set of finitely additive real-valued set functions on S, both under the

Euclidean topology. Recall that, under this topology, bapSq is locally convex (Aliprantis

and Border, 2007, §5.12). B is equipped with the standard order: a ¤ b iff apsq ¤ bpsq for

all s P S. For x P <, we define x� to be the constant function taking value x.

A.1 Proof of Theorem 1

The main part of the result is to show the sufficiency of the axioms for the representa-

tion (direction (i) to (ii)), the proof of which proceeds as follows. By standard arguments,

we obtain a von Neumann-Morgernstern utility function on the consequences, which al-

lows us to work with real-valued functions on S instead of acts. For each non-minimal

non-trivial stakes level r, we define a preference relation ¨r on these functions, which can

be thought of as representing the preferences between corresponding acts considered “as

if” the choices had stakes r. We show (Lemma 5) that each ¨r is a non-trivial, monotonic,

affine, Archimedean pre-order, whence, by Gilboa et al. (2010, Corollary 1) (which is a

version of a Ghirardato et al. (2004, Proposition A.2)), there is a closed convex set of prob-

ability measures Cr representing¨r according to the unanimity rule. Moreover, Lemma 10

shows that, whenever there is a minimal stakes level and non-trivial choices (ie. choices

other than between an act and itself) that have this stakes level, the preference relation for

choices with these stakes can be represented according to the unanimity rule with the inter-

section of the Cr for the other stakes levels. By Lemma 7, the Cr form a nested family of

sets, and we thus have a confidence ranking. By Lemmas 8 and 9, this confidence ranking

is continuous. By construction, the function that assigns to any stakes level r the set Cr is a

well-defined cautiousness coefficient.

Now we proceed with the proof. First we assume (i); we will show (ii). We require the

following lemmas.

Lemma 1. There exists a non-constant utility function u representing the restriction of ¨

to the constant acts.
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Proof. By A1, A2, A5, A4 and A7, the restriction of ¨ to constant acts is non-trivial

complete, reflexive and satisfies independence and continuity. Moreover, it can be shown

to be transitive. For any c, c1, c2 P ∆pXq, suppose that c ¨ c1 and c1 ¨ c2. First consider

the case where c � c1 and c1 � c2. By richness of ®, there exist α P p0, 1s and d P ∆pXq

such that pcαd, c2αdq ® pc, c1q and pcαd, c2αdq ® pc1, c2q. By A3, cαd ¨ c2αd, from which it

follows by A1 and A4, that c ¨ c2, as required. If c � c1 and c1 � c2, then by richness of®,

there exists α P p0, 1s and d P ∆pXq such that pcαd, c2αdq ® pc1, c2q; by A3, cαd ¨ c2αd, and

so by A1 and A4, c ¨ c2. The case where c1 � c2 and c � c1 is treated similarly. The case

where c � c1 � c2 follows directly from A3. The existence of u follows from the standard

von Neumann-Morgenstern theorem.

Let K � up∆pXqq and BpKq be the set of functions in B taking values in K. There is

thus a many-to-one mapping between acts inA and elements of BpKq, given by a � u � f ,

f P A. With slight abuse of notation, we use ¨ to denote the order generated on BpKq

by ¨ under this mapping, and ® to denote the order generated on BpKq � BpKq by ®.

(That ¨ and ® are well-defined on BpKq follows from A5 and the extensionality of ®

respectively.)

Lemma 2. For each a, a1, b, b1 P BpKq with a � b and a1 � b1, there exists α P p0, 1s and

l P BpKq such that pαa� p1� αql, αb� p1� αqlq � pa1, b1q.

Proof. If pa, bq � pa1, b1q, then there is nothing to show. Suppose without loss of generality

that pa, bq   pa1, b1q; the other case is treated similarly. By richness of ®, there exist

β P p0, 1s and l P A such that pβa � p1 � βql, βb � p1 � βqlq ¯ pa1, b1q. If pβa � p1 �

βql, βb�p1�βqlq � pa1, b1q, then the result has been established; if not, then by continuity

of ®, there exists α P pβ, 1q such that pαa�p1�αql, αb�p1�αqlq � pa1, b1q, as required.

Let S be the set of equivalence classes of®. As standard,® onBpKq�BpKq generates

a relation on S, which will be denoted ¤ (with symmetric and asymmetric components �

and   respectively): for r, s P S, r ¤ s iff, for any pf, gq P r and pf 1, g1q P s, pf, gq ®

pf 1, g1q. r P S is a minimal (respectively maximal) element if r ¤ s (resp. r ¥ s) for all

s P S. Note that, since ¤ is a linear ordering, there is at most one minimal (resp. maximal)

element; if it exists, we denote the minimal (resp. maximal) element by S (resp. S). r P S
is non-trivial if there exists pa, bq P r with a � b. It follows from the continuity of ®
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that every non-minimal and non-maximal element in S is non-trivial. Let Snt be the set of

non-trivial elements in S, and let S� be the set of non-minimal non-trivial elements. For

each r P Snt, let ¨r be the reflexive binary relation on BpKq such that, for all a, b P BpKq

with a � b, a ¨r b iff there exists l P BpKq and α P p0, 1s such that pαa� p1� αql, αb�

p1� αqlq P r and αa� p1� αql ¨ αb� p1� αql.

Lemma 3. For each r P Snt, a, b, l P BpKq, and α P p0, 1s, if pαa�p1�αql, αb�p1�αqlq P

r, then αa� p1� αql ¨ αb� p1� αql iff a ¨r b.

Proof. The result is immediate if a � b, so consider a, b P BpKq with a � b. It needs to

be shown that, whenever there exists l,m P BpKq and α, β P p0, 1s such that pαa � p1 �

αql, αb�p1�αqlq � pβa�p1�βqm,βb�p1�βqmq, then αa�p1�αql ¨ αb�p1�αql iff

βa�p1�βqm ¨ βb�p1�βqm. Without loss of generality, suppose that β ¤ α. Consider

first the case where β   α. Note that βa�p1�βqm � β
α
pαa�p1�αqlq�p1� β

α
qpαβ�β

α�β
l�

α�αβ
α�β

mq, where αβ�β
α�β

l � α�αβ
α�β

m P BpKq, since it is a αβ�β
α�β

-mix of l and m; similarly for

βb�p1�βqm. Let f, g, h P A be such that αa�p1�αql � u�f , αb�p1�αql � u�g and
αβ�β
α�β

l� α�αβ
α�β

m � u�h; so βa�p1�βqm � u�f β
α
h and βb�p1�βqm � u�g β

α
c. Since

pf, gq � pf β
α
h, g β

α
hq, by A6, f 1 � g1 iff f β

α
h � g β

α
h. Hence, by A4, f ¨ g iff f β

α
h ¨ g β

α
h.

So αa� p1� αql ¨ αb� p1� αql iff βa� p1� βqm ¨ βb� p1� βqm, as required.

Now consider the case where β � α. If l � m, the result is immediate, so suppose that

l � m. Note that if there exists ε P p0, 1s and k P BpKq with ε � α and pεa�p1� εqk, εb�

p1�εqkq � pαa�p1�αql, αb�p1�αqlq, then, by applying the reasoning in the case above,

we get αa�p1�αql ¨ αb�p1�αql iff εa�p1� εqk ¨ εb�p1� εqk iff βa�p1�βqm ¨

βb � p1 � βqm, as required. This obviously holds if all pairs of non-identical acts have

the same stakes, so suppose that this is not the case. By Lemma 2, there exists n P BpKq

and γ P p0, 1q such that pγpαa � p1 � αqlq � p1 � γqn, γpαb � p1 � αqlq � p1 � γqnq �

pαa�p1�αql, αb�p1�αqlq. By Lemma 2 again, there exists δ P p0, 1q and n1 P BpKq such

that pδpγpαa�p1�αqlq�p1�γqnq�p1�δqn1, δpγpαb�p1�αqlq�p1�γqnq�p1�δqn1q �

pαa�p1�αql, αb�p1�αqlq P r. However, δpγpαa�p1�αqlq�p1�γqnq�p1� δqn1 �

αγδa�p1�αγδqp δ�αγδ
1�αγδ

pγ�αγ
1�αγ

l� 1�γ
1�αγ

nq� 1�δ
1�αγδ

n1q, with δ�αγδ
1�αγδ

pγ�αγ
1�αγ

l� 1�γ
1�αγ

nq� 1�δ
1�αγδ

n1 P

BpKq since it is a mix of elements of BpKq. So αγδ and δ�αγδ
1�αγδ

pγ�αγ
1�αγ

l� 1�γ
1�αγ

nq� 1�δ
1�αγδ

n1

have the properties required above, and the result is established.

Lemma 4. For all r, s P Snt with r ¥ s, ¨r�¨s.

36



Brian Hill Incomplete preferences and confidence

Proof. If s � r, there is nothing to show, so suppose not and consider a, b P B such that

a ¨r b. If a � b, the result follows from the reflexivity of ¨s and ¨r; henceforth suppose

that this is not the case. Without loss of generality, it can be assumed that pa, bq P r. (If not,

replace a, b with αa�p1�αql, αb�p1�αql where pαa�p1�αql, αb�p1�αqlq P r and

continue as below.) It follows from Lemma 3 that a ¨ b. Let β P p0, 1q and m P BpKq, be

such that pβa� p1� βqm,βb� p1� βqmq P s (such β and m exist by Lemma 2). A6 and

A4 imply that βa� p1� βqm ¨ βb� p1� βqm, and hence a ¨s b, as required.

Recall that a binary relation ¨ on BpKq is

• non-trivial if there exists a, b P BpKq such that a ¨ b but not a © b.

• monotonic if, for all a, b, P BpKq, if a ¤ b then a ¨ b.

• affine if, for all a, b, c P BpKq and α P p0, 1q, a ¨ b iff αa�p1�αqc ¨ αb�p1�αqc.

• Archimedean if, for all a, b, c P BpKq, the sets tα P r0, 1s | αa� p1� αqb © cu and

tα P r0, 1s | αa� p1� αqb ¨ cu are closed in r0, 1s.

• a pre-order if ¨ is reflexive and transitive.

Lemma 5. For every r P Snt, ¨r is a non-trivial, monotonic, affine pre-order. Moreover,

if r P S�, ¨r is Archimedean.

Proof. Non-triviality. By A2, ¨ is non-trivial; by A5 and A1, it follows that the restriction

of ¨ to ∆pXq is non-trivial. But ¨r coincides with ¨ on ∆pXq, so it is non-trivial.

Monotonicity. Suppose that a ¤ b and a � b (the result is immediate for a � b). Then,

αa� p1�αql ¤ αb� p1�αql for l P BpKq and α P p0, 1s such that pαa� p1�αql, αb�

p1� αqlq P r. By monotonicity (A5), αa� p1� αql ¨ αb� p1� αql, and so a ¨r b.

Affineness. The result is immediate if a � b; henceforth suppose not. By Lemma

2, there exists β P p0, 1s and l P BpKq such that pβa � p1 � βql, βb � p1 � βqlq P r.

Consider βpαa � p1 � αqcq � p1 � βql and βpαb � p1 � αqcq � p1 � βql: by Lemma 2,

there exists γ P p0, 1s and m P BpKq such that pγpβpαa � p1 � αqcq � p1 � βqlq � p1 �

γqm, γpβpαb � p1 � αqcq � p1 � βqlq � p1 � γqmq P r. Note that γpβpαa � p1 � αqcq �

p1� βqlq � p1� γqm � αγpβa� p1� βqlq � p1� αγqpγ�αγ
1�αγ

pβc� p1� βqlq � 1�γ
1�αγ

mq,

where γ�αγ
1�αγ

pβc � p1 � βqlq � 1�γ
1�αγ

m P BpKq since it is a mix of elements of BpKq.
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Similarly for b. Let f, g, h P A be such that βa� p1� βql � u � f , βb� p1� βql � u � g

and γ�αγ
1�αγ

pβc � p1 � βqlq � 1�γ
1�αγ

m � u � h. Since pf, gq � pfαγh, gαγhq, by A6 and A4,

βa�p1�βql ¨ βb�p1�βql iff γpβpαa�p1�αqcq� p1�βqlq� p1� γqm ¨ γpβpαb�

p1�αqcq� p1�βqlq� p1�γqm. But since γpβpαa�p1�αqcq� p1�βqlq� p1�γqm �

βγpαa� p1� αqcq � p1� βγqpγ�βγ
1�βγ

l� 1�γ
1�βγ

mq, and similarly for b, it follows that a ¨r b

iff αa� p1� αqc ¨r αb� p1� αqc, as required.

Pre-order. Reflexivity follows from the definition of ¨r. As for transitivity, suppose

that a ¨r b and b ¨r c and that a � b � c (if a � b, b � c or a � c, the result is

immediate). By Lemma 2, there exists l P BpKq and α P p0, 1s such that pαa � p1 �

αql, αc � p1 � αqlq P r. Moreover, there exists m,n P BpKq and β, γ P p0, 1s such

that pβpαa � p1 � αqlq � p1 � βqmq, βpαb � p1 � αqlq � p1 � βqmqq P r and pγpαb �

p1 � αqlq � p1 � γqmq, γpαc � p1 � αqlq � p1 � γqmq P r. Since a ¨r b and b ¨r c,

βpαa�p1�αqlq�p1�βqm ¨ βpαb�p1�αqlq�p1�βqmq and γpαb�p1�αqlq�p1�γqm ¨

γpαc�p1�αqlq�p1�γqm. Hence, by A3, αa�p1�αql ¨ αc�p1�αql, and so a ¨r c,

as required.

Archimedean. Let r be a non-minimal element of S. Consider tα P r0, 1s | αa � p1 �

αqb ©r cu; the other case is dealt with similarly. Let ᾱ be a limit point of this set, and

without loss of generality, assume that pᾱa � p1 � ᾱqb, cq P r (if not, replace a, b, c with

appropriate mixtures for which this is the case). It needs to be shown that ᾱa�p1�ᾱqb ©r c.

If ᾱa � p1 � ᾱqb � c the result is immediate; suppose henceforth that this is not the case.

If there is a open interval I in tα P r0, 1s | αa� p1� αqb ©r cu such that ᾱ is a limit point

of I and such that pβa�p1� βqb, cq ® pᾱa�p1� ᾱqb, cq for all β P I , then, by Lemma 4,

βa�p1�βqb © c for all β P I , whence ᾱa�p1�ᾱqb © c by A7, and so ᾱa�p1�ᾱqb ©r c

as required.

Now suppose that there is no such interval. Since r is a non-minimal element of S,

by the continuity of ® and Lemma 2, there exists l P BpKq and δ̄ P p0, 1q such that

pδ̄pᾱa � p1 � ᾱqbq � p1 � δ̄ql, δ̄c � p1 � δ̄qlq   pᾱa � p1 � ᾱqb, cq. Let γ � mintδ P

pδ̄, 1s| pδpᾱa�p1� ᾱqbq�p1�δql, δc�p1�δqlq ¯ pᾱa�p1� ᾱqb, cqu (by continuity of®

this is a minimum). Consider any δ P pδ̄, γq; by the definition of γ, pδpᾱa�p1� ᾱqbq�p1�

δql, δc�p1� δqlq   pᾱa�p1� ᾱqb, cq. Note moreover that δpᾱa�p1� ᾱqbq� p1� δql �

ᾱpδa�p1�δqlq�p1�ᾱqpδb�p1�δqlq. So, by the continuity of®, there is an open interval

Iδ � p0, 1q containing ᾱ such that, for all β P Iδ, pβpδa � p1 � δqlq � p1 � βqpδb � p1 �
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δqlq, δc�p1� δqlq ® pᾱa�p1� ᾱqb, cq. Note that IδXtα P r0, 1s | αa�p1�αqb ©r cu is

non-empty, since ᾱ is a limit point of tα P r0, 1s | αa�p1�αqb ©r cu. Furthermore, since

βpδa�p1�δqlq�p1�βqpδb�p1�δqlq � δpβa�p1�βqbq�p1�δql, Lemma 4 implies that

βpδa�p1�δqlq�p1�βqpδb�p1�δqlq © δc�p1�δql for all β P IδXtα P r0, 1s | αa�p1�

αqb ©r cu. It follows by A7 that ᾱpδa�p1�δqlq�p1�ᾱqpδb�p1�δqlq © δc�p1�δql. Since

this holds for all δ P pδ̄, γq, it follows by A7 that γpᾱa�p1�ᾱqbq�p1�γql © γc�p1�γql;

whence, since pγpᾱa � p1 � ᾱqbq � p1 � γql, γc � p1 � γqlq P r, ᾱa � p1 � ᾱqb ©r c, as

required.

Lemma 6. For each r P S�, there exists a unique closed convex set of probabilities Cr
representing ¨r according to the following equation: for all a, b P B, a ¨r b iff

(5)
¸
sPS

apsqppsq ¤
¸
sPS

bpsqppsq for all p P Cr

Proof. This follows from Lemma 5, by Gilboa et al. (2010, Corollary 1),22 which estab-

lishes such a representation for non-trivial, monotonic, affine, Archimedean pre-orders.

Lemma 7. For all r, s P S� with r ¥ s, Cs � Cr.

Proof. This follows directly from Lemma 4 and Ghirardato et al. (2004, Proposition A.1).

Lemma 8. For all r P S�, Cr �
�
r1 r Cr1 .

Proof. By Lemma 7, Cr � Cr1 for all r1   r. Suppose, for reductio, that Cr �
�
r1 r Cr1 , so

that there exists a point (probability measure) p P Crz
�
r1 r Cr1 . By a separating hyperplane

theorem (Aliprantis and Border (2007, 5.80)), there is a continuous linear functional φ on

bapSq and α P < such that φppq   α ¤ φpqq for all q P
�
r1 r Cr1 . Since S is finite (so

B is finite-dimensional), B is reflexive, and, by the standard isomorphism between bapSq

and B�, it follows that bapSq� is isometrically isomorphic to B (Dunford and Schwartz,

1958, IV.3); hence there is a real-valued function a P B such that φpqq �
°
sPS apsqqpsq

for any q P bapSq. Without loss of generality, α, φ and a can be chosen so that α P K,

a P BpKq, pa, α�q P r. By Lemma 2, there exists l P BpKq and β P p0, 1q such that

22See Ghirardato et al. (2004, Proposition A.2) for a related result.
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pβa�p1�βql, βα��p1�βqlq   pa, α�q. Let β1 � mintγ P rβ, 1s| pγa�p1� γql, γα��

p1 � γqlq ¯ pa, α�qu (this is a minimum by the continuity of ®). Taking f, h P A and

c P ∆pXq such that u � f � a, u � h � l and upcq � α, it follows, by the construction, that

for any γ P pβ, β1q, cγh ¨ fγh. However, by construction, cβ1h ª fβ1h, contradicting A7.

Hence Cr �
�
r1 r Cr1 .

Lemma 9. For all non-maximal r P S�, Cr �
�
r1¡r Cr1 .

Proof. By Lemma 7, Cr � Cr1 for all r1 ¡ r. Suppose, for reductio, that Cr �
�
r1¡r Cr1 , so

that there exists a point (probability measure) p P
�
r1¡r Cr1zCr. By a separating hyperplane

theorem (Aliprantis and Border (2007, 5.80)), there is a continuous linear functional φ on

bapSq, an α P < and an ε ¡ 0 such that φppq ¤ α� ε and α ¤ φpqq for all q P Cr. As in the

proof of Lemma 8, there is a real-valued function a P B such that φpqq �
°
sPS apsqqpsq

for any q P bapSq. Without loss of generality, α, φ and a can be chosen so that α P K,

a P BpKq, pa, α�q P r. By Lemma 2, there exists l P BpKq and β P p0, 1q such that

pβa�p1�βql, βα��p1�βqlq ¡ pa, α�q. Let β1 � mintγ P rβ, 1s| pγa�p1� γql, γα��

p1 � γqlq ® pa, α�qu. Taking f, h P A and c, d P ∆pXq such that u � f � a, u � h � l,

u�c � α� and u�d � pα� ε
2
q�, it follows, by the construction, that dβ1h   cβ1h ¨ fβ1h but

that dγh ª fγh for all γ P pβ, β1q. By continuity of ® and Lemmas 3 and 4, it follows that

for any h1 P A and γ1 P p0, 1q such that pdγ1h1, fγ1h1q ¡ pd, fq, dγ1h1 ª fγ1h
1, contradicting

A8; hence Cr �
�
r1¡r Cr1 .

Lemma 10. Let ¨�S be the relation on BpKq generated by (5) with the set of probability

measures
�
rPS� Cr. If S is a minimal non-trivial element of S, then ¨S�¨�S .

Proof. By Lemma 4, ¨S�
�
rPS� ¨r, and so ¨S�¨�S . For the inverse containment,

suppose that a ¨S b. Since ¨S is an affine pre-order (by Lemma 5), it follows that αpb �

aq � x� ©S x�, for any α ¡ 0, x P < such that αpb � aq � x�, x� P BpKq. Choose α

and x such that this is the case. If x is minimal in K then αpb � aq � x� ©�S x� since

¨�S is monotonic, so suppose not. By A8, for any ε ¡ 0, there exists s ¡ S such that

αpb � aq � x� ©s px � εq�; therefore αpb � aq � x� ©�S px � εq� for all ε ¡ 0. Since

¨�S is Archimedean, it follows that αpb�aq�x� ©�S x
�, and, by the affineness of¨�S ,

a ¨�S b, as required.
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Conclusion of the proof of Theorem 1. Define

Ξ �

$''''&
''''%

tCr| r P S�u if S � S�

tCr| r P S�u Y t
�
rPS� Cru if S � S� Y tSu

tCr| r P S�u Y t
�
rPS� Cru if S � S� Y tSu

tCr| r P S�u Y t
�
rPS� Cr,

�
rPS� Cru if S � S� Y tS, Su

where the Cr are as specified in Lemma 6 and where, in the last two cases, S is understood

to be a maximal element of S not belonging to S�. It follows from Lemma 7 that Ξ is a

nested family of sets. Since the Cr are closed and convex for all r P S� (Lemma 6), Ξ

is a confidence ranking. By Lemmas 8 and 9, Ξ is continuous. D is defined as follows:

for all pf, gq P A � A, if rpf, gqs P S�, then Dppf, gqq � Crpf,gqs, if pf, gq P S, then

Dppf, gqq �
�
sPS� Cs, and if pf, gq P S, then Dppf, gqq �

�
sPS� Cs. Order preservation

and surjectivity of D are immediate from the definition and Lemma 7. By construction and

Lemma 10, u,Ξ, D represent ¨ according to (1).

Now consider the clause concerning the centering axiom A9. Let ¨�S be the rela-

tion on BpKq generated by (5) with the set of probability measures
�
rPSnt Cr. Obviously

¨�S�
�
rPSnt ¨r; by A9, the latter relation is complete, and hence so is ¨�S . It follows

from the form of (5) that
�
rPSnt Cr is a singleton, as required.

The direction from (ii) to (i) is generally straightforward. The only interesting case is

continuity (A7). Consider any f, g, h P A, and the set tpα, βq P r0, 1s2| fαh ¨ gβhu.

Suppose that pα�, β�q is a limit point of this set, and consider a sequence ppαi, βiqq of

members of the set with pαi, βiq Ñ pα�, β�q. If there exists a subsequence of ppαi, βiqq,

tending to pα�, β�q, such that pfαinh, gβinhq ¯ pfα�h, gβ�hq for all pαin , βinq in this se-

quence, then the case can be treated in a similar way to that used below, relying on the

continuity of the confidence ranking. Henceforth, we consider the case where there is

no such sequence. In this case, there exists f 1, g1 P A with pf 1, g1q   pfα�h, gβ�hq.

Moreover, by the continuity of ®, for each such pf 1, g1q, there is an open interval around

pα�, β�q such that pfγh, gδhq ¯ pf 1, g1q for any pγ, δq in this interval. Hence, for each

such pf 1, g1q, there is a subsequence ppα
j
rpf 1,g1qs
n

, β
j
rpf 1,g1qs
n

qq of ppαi, βiqq, tending to pα�, β�q,

with pfα
j
rpf 1,g1qs
n

h, gβ
j
rpf 1,g1qs
n

hq ¯ pf 1, g1q for all n P N. It follows, since D is order-

preserving, that for all n P N,
°
sPS upfα

j
rpf 1,g1qs
n

hpsqq.ppsq ¤
°
sPS upgβ

j
rpf 1,g1qs
n

hpsqq.ppsq,
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for all p P Dppf 1, g1qq. Hence, by the continuity of the linear representation, it follows that°
sPS upfα�hpsqq.ppsq ¤

°
sPS upgβ�hpsqq.ppsqq, for all p P Dppf 1, g1qq. Since this holds

for every pf 1, g1q   pf, gq, and since, by the continuity of the confidence ranking and the

surjectivity of D, Dppf, gqq �
�

pf 1,g1q pf,gqDppf
1, g1qq, there cannot be a q P Dppf, gqq

such that
°
sPS upfα�hpsqq.qpsq ¡

°
sPS upgβ�hpsqq.qpsq. So fα�h ¨ gβ�h, and hence

tpα, βq P r0, 1s2| fαh ¨ gβhu is closed, as required.

Finally, consider the uniqueness clause. Uniqueness of u follows from the von Neumann-

Morgenstern theorem. As regards uniqueness of Ξ, proceed by reductio; suppose that

u,Ξ1, D1 and u,Ξ2, D2 both represent ¨ according to (1), with Ξ1 � Ξ2. So, for some

f, g P A, D1ppf, gqq � D2ppf, gqq (by the surjectivity of the Di). Suppose, without loss of

generality, that p P D1ppf, gqqzD2ppf, gqq. By a separating hyperplane theorem (Aliprantis

and Border, 2007, 5.80), there is a continuous linear functional φ on bapSq and α P < such

that φppq   α ¤ φpqq for all q P D2ppf, gqq. Since S is finite (soB is finite-dimensional),B

is reflexive, and, by the standard isomorphism between bapSq andB�, it follows that bapSq�

is isometrically isomorphic to B (Dunford and Schwartz, 1958, IV.3); hence there is a real-

valued function a P B such that φpqq �
°
sPS apsqqpsq for any q P bapSq. Without loss of

generality φ, a and α can be chosen so that α P K, a P BpKq and pa, α�q � pu � f, u � gq.

Taking h P A such that u � h � a and c P ∆pXq such that upcq � α, we have that°
sPS uphpsqqppsq ¥

°
sPS upcqppsq for all p s.t. p P D2pph, cqq, whereas this is not the case

for all p s.t. p P D1pph, cqq, contradicting the assumption that both u,Ξ1, D1 and u,Ξ2, D2

represent ¨. A similar argument establishes the uniqueness of D.

A.2 Proofs of results in Sections 4 and 5

Proof of Proposition 1. Let the assumptions of the Proposition be satisfied. (ii) implies (i)

is straightforward, so we consider only (i) implies (ii). Since the preference relations are

complete on the set of constant acts, they coincide on that set; hence, by the uniqueness

clause of the von Neumann-Morgenstern theorem, u2 is a positive affine transformation of

u2. Hence K and the mapping from A to BpKq used in the proof of Theorem 1 can be

taken to be the same for the two agents; we use the notation employed in that proof. By (i),

for every r P S�, ¨1
r�¨

2
r , and so, by Ghirardato et al. (2004, Proposition A.1), C2

r � C1
r .

It follows that Ξ2 � Ξ1 and D2ppf, gqq � D1ppf, gqq for all pf, gq P A2.
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Proof of Proposition 2. The ‘if’ direction is straightforward. The ‘only if’ direction is a

simple corollary of the proof of Theorem 1. On the one hand, if ¨1 and ¨2 are confidence

equivalent, they have identical preferences over constant acts (of which they are maximally

confident), and hence the same utilities up to positive affine transformation. On the other

hand, if they are confidence equivalent, the sets of preferences t¨r |r P S�u defined in the

proof of Theorem 1 are the same, and so the confidence rankings are the same.

Proof of Theorem 2. The direction (ii) to (i) is straightforward, so consider the direction

(i) to (ii). Part (a) follows from B1 and Theorem 1. As for part (b), consider f, g P A.

If minDppf,gqq
°
sPS upfpsqq.ppsq ¥ minDppf,gqq

°
sPS upgpsqq.ppsq, then, for any c P ∆pXq,

if
°
sPS upgpsqq.ppsq ¥ upcq for all p P Dppf, gqq then

°
sPS upfpsqq.ppsq ¥ upcq for

all p P Dppf, gqq. Hence, by B3, f ¢n g, whence, by B2, f ©n g. Similarly, if

minDppf,gqq
°
sPS upfpsqq.ppsq ¤ minDppf,gqq

°
sPS upgpsqq.ppsq then g ©n f . Hence rep-

resentation (2) holds. Uniqueness follows from Theorem 1.

A.3 Proofs of results in Section 6

As stated in Section 6 (see in particular footnote 15), we continue to use the standard

notation (and generic terms f, g . . . ) for acts, as well as the standard notation (and generic

terms x, z . . . ) for commodities. In particular, for commodities x, z and α P r0, 1s, αx �

p1 � αqz is the standard vector sum of products of the two commodities, whereas xαz

is the act obtained by applying the mixture operation on (the acts corresponding to) the

commodities. Whilst xαz does not in general belong to <S�, for any preference relation ¨i

with the properties specified in Section 6, there is a natural element in <S� corresponding

to it; namely ppuiq�1pαuipx1q � p1 � αquipz1qq, . . . , pu
iq�1pαuipx|S|q � p1 � αquipz|S|qqq.

(At each state, the lottery obtained in that state is replaced by its certainty equivalent.)

Henceforth we denote this element by xiαz.

We first require the following Lemma.

Lemma 11. Under Assumption 1, the strict preferences ¡i have the following reduced

convexity property: for all f, g, h P A, if g, h ¡i f , then, for all α P p0, 1q, there exists

β P p0, 1s such that pgαhqβ1f ¡i f for all β1 P p0, βs.

Proof. Let f, g, h P A such that g, h ¡i f , and consider α P p0, 1q. By the monotone de-

creasing and continuity properties of stakes, there exists β P p0, 1s such that ppgαhqβf, fq ®
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mintpg, fq, ph, fqu. By the representation (1), it follows that pgαhqβf ©i f . However, if

pgαhqβf �
i f , then, by indifference consistency (and the properties of the representation)

pgαhqγh
1 �i fγh

1 for any γ P p0, 1s, h1 P A with ppgαhqγh1, fγh1q � mintpg, fq, ph, fqu,

contradicting g, h ¡i f , under representation (1). Hence pgαhqβf ¡i f and, by indiffer-

ence consistency, the fact that the stakes are monotone decreasing, and the properties of the

representation, pgαhqβ1f ¡i f for all β1 P p0, βs, as required.

Proof of Theorem 3. For any x P <S�, let πipxq � tp P ∆pΣq|@z P <S�, if z ¡ x, then p �

z ¡ p �xu, and let π̄ipxq � tp P ∆pΣq|@z P <S�, if z ¡ x, then p �z ¥ p �xu. On inspection,

it is straightforward to check that the reduced convexity property (Lemma 11), combined

with the concavity of u and the monotonicity of representation (1), is sufficient for the

application of standard arguments on welfare theorems in the absence of completeness

and transitivity, notably Fon and Otani (1979), yielding the conclusion that, if x is Pareto

optimal, there exists p P
�
i π̄

ipf iq. (In a word, in the presence of reduced convexity and

concavity of the utility function, Pareto optimality implies that the convex hull of the strict

upper contour set of xi is disjoint from txiu, allowing application of a separating hyperplane

theorem. By monotonicity of representation (1), the separating hyperplane has a positive

normal; by normalising, this yields a p P
�
i π̄

ipxiq.) We show that πipxq � π̄ipxq for all

i and x P <S�. Suppose not, and let p P π̄ipxqzπipxq for some i and x; so there exists z

with z ¡i x and p � z � p � x. By the fact that stakes are monotone decreasing, indifference

consistency of preferences, and representation (1), ziαx ¡
i x for any α P p0, 1s. By strict

concavity of u, for all s P S, pziαxqs � puiq�1pαuipzsq�p1�αqu
ipxsqq ¤ αzs�p1�αqxs,

with strict inequality whenever zs � xs. It follows that either p � x � p � pαz � p1 �

αqxq ¡ p � pziαxq, contradicting the assumption that p P π̄ipfq, or ppsq � 0 whenever

xs � zs. Consider the latter case, and let S1 � ts P S| ppsq � 0u. By full support,

minqP�CPΞi C
qpS1q
qpSzS1q

¡ 0; pick any δ ¡ 0 with minqP�CPΞi C
qpS1q
qpSzS1q

¡ δ
maxsRS1

ui1pzsq

minsPS1
ui1pzsq

. For

ε ¡ 0 and define the allocation zε as follows: zεs � ε for s P S1, and zεs � �ε.δ for s R S1.

By the definition of zε, z � zε ¡i x for ε sufficiently small, and p � pz � zεq   p � x for all

ε ¡ 0, contradicting the assumption that p P π̄ipxq. Hence π̄ipxq � πipxq as required.

By standard arguments, if
�
i π

ipxiq � H, then px1, . . . , xnq is Pareto optimal. It re-

mains to show that Πipxq � πipxq for all i and x P <S�.

We first show that Πipxq � πipxq. Note that, if z ¡i x, then
°
s ppsqpu

ipzsq�u
ipxsqq ¡

0 for all p P ripDippx, zqqq and hence for all p P
�
z�x ripD

ipx, zqq. By concavity of ui, it
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follows that
°
s ppsqu

i1pxsqpzs � xsq ¡ 0 for all p P
�
z�x ripD

ipx, zqq. Renormalising, it

follows that, for any q P Πipfq,
°
s qs � pzs � xsq ¡ 0, and hence that q � z ¡ q � x. Since

this holds for all z P <S� with z ¡i x, q P πipxq.

We now show that πipxq � Πipxq. Suppose not, and let p̄ P πipxqzΠipxq. Since, as is

straightforwardly checked, Πipxq is convex, by a separation theorem, there exists y P <S

and b P < with p̄ � y ¤ b ¤ q � y for all q P Πipxq where the right hand inequality is strict

for all q P ripΠipxqq. Without loss of generality, we can take b � 0. Since this implies

that, for α ¡ 0, q �αy � 1°
tPS pptqu

i1pxtq

°
s ppsqu

i1pxsqαys ¥ 0 for all p P
�
z�x ripD

ipx, zqq

with strict inequality for all p P rip
�
z�x ripD

ipx, zqqq, and since
�
z�x ripD

ipx, zqq is

compact, it follows that, for α sufficiently small,
°
s ppsqpu

ippx � αyqsq � uipxsqq ¥ 0

for all p P
�
z�x ripD

ipx, zqq, with strict inequality for some such p. Let A be the set

of α possessing this property and such that x � αy P <S�; we show that x � αy ¡i x

for some α P A. If not, then for every α P A, there exists p̂ P Dippx � αy, xqq with°
s p̂psqpu

ippx � αyqsq � uipxsqq   0. By nestedness of Ξi, it follows that there exists

p̂ P
�
z�x ripD

ipx, zqq with
°
s p̂psqpu

ippx�αyqsq�u
ipxsqq   0, contradicting the inverse

inequality above. Hence x � αy ¡i x for some α ¡ 0, whereas p̄ � px � αyq ¤ p̄ � x, so

p̄ R πipxq, as required.

Proof of Proposition 3. We show this on the example given in the text. Consider the full

insurance allocation pz1
δ̄
, z2
δ̄
q � ppδ̄w, δ̄wq, pp1 � δ̄qw, p1 � δ̄qwq. Agent 2 would accept to

exchange x2 for this (x2  2 z2
δ̄
) iff:

0.5u2pp1� δqwq � 0.5u2pδwq   u2p1� δ̄q

This gives a strict upper bound ν on δ̄. If a condition analogous to that in (4) holds,

namely:

(6) mintηwmaxt|δ � δ̄|, |δ̄ � p1� δq|u, 0.45u � 0.5 ¡
δ̄1�γ1

� p1� δq1�γ
1

δ1�γ1 � p1� δq1�γ1

for all δ̄   ν, then, for all δ̄ such that x2  2 z2
δ̄
, x1 ¢1 z1

δ̄
; hence there are no Pareto

optimal allocations accessible from px1, x2q. It is straightforwardly checked that, with the

parameter values given in the text, these conditions are satisfied.
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Proof of Proposition 4. It suffices to give an example where no Pareto optimum is m-

accessible for any finitem; we use a refinement of the previous example, with γ1 � γ2 � 1.

Take an allocation px1, x2q � ppδ1w, δ2wq, pp1�δ1qw, p1�δ2qwqq with the following prop-

erties:

(a) 1 ¡ δ1 ¡ δ2 ¡ 0

(b) δ1 � δ2   18δ2p1� δ1q

(c) ηw ¡ max
!

1
p1�δ1q�p1�δ1q0.5p1�δ2q0.5p2δ1�1q

, 1
δ1�δ0.5

1 δ0.5
2 �2δ0.5

1 δ1.5
2
, 2
)

.

It is straightforward to see that such allocations exist: δ1 �
3
4
, δ2 �

1
4
, η � 2.5

w
is an

example. Suppose, for reductio, that a Pareto optimal allocation is m-accessible for some

finite m: there exists a sequence of allocations px1
j , x

2
jq � ppδj1w, δj2wq, pp1 � δj1qw, p1 �

δj2qwqq, 1 ¤ j ¤ m� 1, with px1
1, x

2
1q � px1, x2q, xij�1 ¡

i xij or xij�1 � xij for all i, j, and

px1
m�1, x

2
m�1q Pareto optimal – and so px1

m�1, x
2
m�1q � ppδ1w, δ1wq, pp1� δ1qw, p1� δ1qwqq

for some δ1 P r0, 1s. Without loss of generality, it can be assumed that δ1 ¤ δpj�1q1 ¤

δj1 ¤ δ1 and δ1 ¥ δpj�1q2 ¥ δj2 ¥ δ2 for all 1 ¤ j ¤ m. Moreover, such a sequence

implies that 0.5u2pp1 � δ1qwq � 0.5u2pp1 � δ2qwq   u2pp1 � δ1qwq and pps1qu
1pδ1wq �

pps2qu
1pδ2wq   u1pδ1wq for all p P

�
x1�x1 ripD1px1, x1qq; since

�
x1�x1 ripD1px1, x1qq

contains (only) the probability measure giving the value 0.5 to each state, it follows that

0.5u1pδ1wq � 0.5u1pδ2wq   u1pδ1wq. Hence:

(7) δ2   δ0.5
1 δ0.5

2   δ1   1� p1� δ1q
0.5p1� δ2q

0.5   δ1

Consider an arbitrary consecutive pair px1
j , x

2
jq and px1

j�1, x
2
j�1q in the se-

quence. By Theorem 3 (applied in the special case of confidence rankings in-

volving single sets of probability measures) and the fact that the latter is a Pareto-

improvement on the former, tp
pps1qu11px1

j ps1qq°
tPS pptqu

11px1
j ptqq

,
pps2qu11px1

j ps2qq°
tPS pptqu

11px1
j ptqq

| p P ripD1px1
j , x

1
j�1qqu X

tp
pps1qu21px2

j ps1qq°
tPS pptqu

21px2
j ptqq

,
pps2qu21px2

j ps2qq°
tPS pptqu

21px2
j ptqq

tq| p P ripD2px2
j , x

2
j�1qqu � H. Doing the calcula-

tions, and using the fact that ripD2px2
j , x

2
j�1qq � 0.5, this is the case if δj1�δj1δj2

δj1�δj2�2δj1δj2
R

ripD1px1
j , x

1
j�1qq. Hence we must have that:

(8) mintηwmaxt|δj1 � δpj�1q1|, |δpj�1q2 � δj2|u, 0.45u � 0.5 ¤
δj1 � δj1δj2

δj1 � δj2 � 2δj1δj2
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Note that 0.95 ¤
δj1�δj1δj2

δj1�δj2�2δj1δj2
if and only if:

δj1 � δj2 ¥ 18δj2p1� δj1q

¥ 18δ2p1� δ1q

by the bounds noted above on δj1 and δj2. It follows from assumption (b) and the fact that

δj1 � δj2 ¤ δ1 � δ2 for all j, that, for all j, 0.95 ¡
δj1�δj1δj2

δj1�δj2�2δj1δj2
. (8) thus reduces to the

following inequalities

δpj�1q1 ¥ δj1 �
1

2ηw

δj1 � δj2
δj1 � δj2 � 2δj1δj2

δpj�1q2 ¤ δj2 �
1

2ηw

δj1 � δj2
δj1 � δj2 � 2δj1δj2

And so:

δpj�1q1 � δpj�2q2 ¥ pδj1 � δj2q

�
1�

1

ηw

1

δj1 � δj2 � 2δj1δj2



(9)

But, using (7):

δj1�δj2�2δj1δj2 ¥

$'''&
'''%
p1� δ1q � p1� δ1q

0.5p1� δ2q
0.5p2δ1 � 1q if δj1, δj2 ¡ 1

2

δ0.5
1 δ0.5

2 � δ2 � 2δ0.5
1 δ1.5

2 if δj1, δj2   1
2

1
2

if pδj1 � 1
2
qpδj2 �

1
2
q ¤ 0

It thus follows from (9) that:

δpj�1q1 � δpj�1q2 ¥ pδj1 � δj2qp1� χq(10)

where

χ � max

"
1

ηw

1

p1� δ1q � p1� δ1q0.5p1� δ2q0.5p2δ1 � 1q
,

1

ηw

1

δ0.5
1 δ0.5

2 � δ2 � 2δ0.5
1 δ1.5

2

,
2

ηw

*
By assumption (c), χ   1. Iterating inequality (10), we obtain:

δpm�1q1 � δpm�1q2 ¥ pδ1 � δ2qp1� χqm ¡ 0

contradicting the assumption that px1
m�1, x

2
m�1q is Pareto optimal.
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B Properties involved in Assumption 1

Readers familiar with the literature on general equilibria in the absence of completeness

or transitivity might expect these results to be directly applicable to the case considered

in Section 6. This is in fact not straightforwardly possible in general, for two reasons.

Firstly, the weakening of transitivity in representation (1) implies that, for certain notions

of stakes, preferences represented by (1) may not be convex. (Consider a stakes relation

where pf, gαhq ¡ pf, gq, pf, hq, for some α P p0, 1q; with such a notion of stakes, the

preferences g, h ¡ f � gαh are compatible with representation (1).) Secondly, since the

weak preference order is taken as primitive, it does not follow from the axioms in Section

2.3 that the strict preference order is continuous.23

Assumption 1 deals with these issues, by assuming the following properties of the

stakes relation and of the preferences.

Monotone decreasing For all f, g P A and α, β P r0, 1s, if α ¤ β, then pf, gαfq ®

pf, gβfq.

Indifference consistency For all f, g, h P A and α P p0, 1q such that f � g and fαh �

gαh, if f � g, then fαh � gαh.

Full support For all s P S, there exists cs P <�� such that, for all h P A and α P p0, 1s,

p1sqαh ¡ pcsqαh.24

The monotone decreasing property of stakes states that as one considers choices be-

tween acts that are “closer” to each other (in the sense of mixtures), the stakes decrease.

This property is satisfied by some of the notions of stakes mentioned in Section 2.2 – for

example, stakes as the minimum utility which could be obtained from either of the acts, as

the difference between the minimum utilities yielded by the two acts, or as the maximum

23Schmeidler (1971) has shown that for incomplete transitive preferences (over appropriate spaces), the

weak and strict preference orderings cannot both be continuous; although his result does not apply here, due

to the weakening of transitivity, it emphasises the subtlety of the issue of the continuity of the derived strict

preference ordering. Note that this issue could also have been resolved by taking the strict preference ordering

as primitive and using a version of the representation proposed by Bewley (2002); see Section 1.2.
241s is the characterisic function for s: 1sps

1q � 1 for s1 � s and 1sps
1q � 0 for s1 � s. As specified in

Section 2.1, cs is the constant act taking the degenerate lottery yielding cs for sure in all states.
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utility difference between the two acts (taken over the set of states) – whereas it is not sat-

isfied by other notions – for example, taking the maximum utility which could be obtained

from either of the acts.

Indifference consistency implies that indifferences cannot become strict preferences

simply on altering the stakes. Under representation (1), it is possible that f � g, because

the expected utilities are equal for all p P Dppf, gqq, but that fαh ¡ gαh for some α

and h, because Dppfαh, gαhqq � Dppf, gqq contains a probability measure q such that the

expected utility of f calculated with q is greater than that of g. In such cases,Dppfαh, gαhqq

is of a higher dimensionality thanDppf, gqq; the latter set, but not the former, is contained in

the hyperplane defined by u�f � u�g. Indifference consistency rules out such possibilities;

technically, it can be thought of as a constant dimensionality assumption on the sets of

probability measures in the space ∆pΣq.

Full support is the behavioural formulation of the following full support property of Ξ:

for each s P S, there exists bs ¡ 0 such that ppsq ¥ bs for all p P
�

CiPΞ Ci. This property

can be thought of as the analogue of full support for a probability measure, but for sets of

measures and confidence rankings. In particular, it is stronger than simply asking that all

probability measures in the confidence ranking have full support: it requires moreover that

probability measures have a common non-zero lower bound on the values for each state.
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